PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Utilization of Ziziphus lotus Fruit as a Potential Biosorbent for Lead(II) and Cadmium(II) Ion Removal from Aqueous Solution

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The removal of cadmium (II) and lead (II) ions from aqueous solutions by the Ziziphus lotus fruits powder, as inexpensive and eco-friendly biosorbent, was studied in batch mode. Fruits powder (FP) revealed the highest uptake rate at pH=8 and pH=7 for Cd(II) and Pb(II) consecutively. The best metal adsorption rate is obtained with a temperature ranging from 25 to 30 °C, a contact time of 90 min, an initial ionic concentration of 100 mg/L, and a biosorbent dosage ranging from 3.5 to 5 g/L.The experimental kinetic data of the biosorption process for both heavy metal ions were fitted by the pseudo second order model. The equilibrium data fitted very well to the Langmuir model. The maximum monolayer biosorption capacities were 33.94 mg/g and 69.06 mg/g for Cd(II) and Pb(II) respectively. The main chemical groups which are involved in the trapping of Cd(II) and Pb(II) and which have been revealed by FTIR spectral analysis are: N–C, O=C, H-O, H-C, and O–C. The present research confirms that Z. lotus fruits could be exploited as a low-cost and an effective biosorbent for the elimination of Cd(II) and Pb(II) ions from aqueous solution.
Twórcy
  • Plant Biotechnology Team, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
  • Agronomic and Veterinary Institute Hassan II (IAV), Production, Protection and Plant Biotechnology Department, Rabat, Morocco
  • Plant Biotechnology Team, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
  • Laboratory of Nanomaterials, Nanotechnologies and Environment, Center of Materials, Faculty of Science, Mohammed V University in Rabat, Rabat, Morocco
  • National Institute of Health, Department of Toxicology, Health Ministry, Rabat, Morocco
  • Advanced Materials, Structures and Civil Engineering Team, ENSA Tetouan, Abdelmalek Essaadi University, Tetouan, Morocco
  • Plant Biotechnology Team, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
  • Plant Biotechnology Team, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
Bibliografia
  • 1. Abdel-Raouf N., Sholkamy E.N., Bukhari N., Nouf M.A.-E., Alsamhry K.I., Al-Khiat H.S., Ibraheem I.B.M. 2022. Bioremoval capacity of CO2 + using phormidium tenue and chlorella vulgaris as biosorbents. Environmental Research 204 (mars): 111630. https://doi.org/10.1016/j.envres.2021.111630.
  • 2. Aboli E., Dariush J., Hossein E. 2020. Heavy metal ions (lead, cobalt, and nickel) biosorption from aqueous solution onto activated carbon prepared from citrus limetta leaves. Carbon Letters 30 (6): 683–98. https://doi.org/10.1007/s42823-020-00141-1.
  • 3. Akpomie K.G., Jeanet C. 2020. Banana peel as a biosorbent for the decontamination of water pollutants. A review. Environmental Chemistry Letters 18 (4): 1085‑1112. https://doi.org/10.1007/s10311-020-00995-x.
  • 4. Alengebawy A., Sara T.A., Sundas R.Q.I., Man-Qun W. 2021. Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics 9 (3): 42. https://doi.org/10.3390/toxics9030042.
  • 5. Ali S., Zohaib A., Muhammad R., Ihsan E.Z., İlkay Y., Aydın Ü., Mohamed M. A-D, May B., Mirza H., Dimitris K. 2020. Application of floating aquatic plants in phytoremediation of heavy metals polluted water: A Review. Sustainability 12 (5): 1927. https://doi.org/10.3390/su12051927.
  • 6. Amro A, Abhary M. 2019. Removal of lead and cadmium ions from waterusing cladophora biomass. Polish Journal of Environmental Studies 28 (5): 3589‑96. https://doi.org/10.15244/pjoes/94622.
  • 7. Amro A, Mohammad A, Muhammad M.M.I., Samah A.. 2019. Removal of lead and cadmium ions from aqueous solution by adsorption on a low-cost phragmites biomass. Processes 7 (juillet): 406. https://doi.org/10.3390/pr7070406.
  • 8. Anayurt R.A., Ahmet S., Mustafa T. 2009. Equilibrium, thermodynamic and kinetic studies on biosorption of Pb(II) and Cd(II) from aqueous solution by macrofungus (Lactarius scrobiculatus) biomass. Chemical Engineering Journal 151 (1): 255‑61. https://doi.org/10.1016/j.cej.2009.03.002.
  • 9. Ansari T.M., Shazia S., Suryyia M., Saima N., Muhammad A.H. 2020. Litchi chinensis peel biomass as green adsorbent for cadmium (Cd) ions removal from aqueous solutions. Desalination and Water Treatment 173: 343–50. https://doi.org/10.5004/dwt.2020.24737.
  • 10. Arola K., Bart V.d.B., Mika Mänttäri, Mari K. 2019. Treatment options for nanofiltration and reverse osmosis concentrates from municipal wastewater treatment: A review. Critical Reviews in Environmental Science and Technology 49 (22): 2049‑2116. https://doi.org/10.1080/10643389.2019.1594519.
  • 11. Ashish S., Namita. 2017. Biomolecules for removal of heavy metal. Recent Patents on Biotechnology 11 (3): 197‑203. https://doi.org/10.2174/1872208311666170223155019.
  • 12. Asmaa M., Belbahloul M., Samir H., Buscotin B., Mohamed H., Belhajjia C., Hinde A., Abdeljalil Z., Abdellah A.S.El. 2018. Desalination and water treatment. Desalination and water treatment 126 (10): 296‑305. https://doi.org/10.5004/dwt.2018.22904.
  • 13. Beni A.A., Akbar E. 2020. Biosorption, an efficient method for removing heavy metals from industrial effluents: A review. Environmental Technology & Innovation 17 (2): 100503. https://doi.org/10.1016/j.eti.2019.100503.
  • 14. Bernal-Romero d.H.B., María d.L.Á., Nuria B.-B., Daniel P.R. 2019. Removal of emerging pollutants in water treatment plants: Adsorption of methyl and propylparaben onto powdered activated carbon. Adsorption 25 (5): 983‑99. https://doi.org/10.1007/s10450-019-00120-7.
  • 15. Bhattacharjee C., Suman D., Vinod K.S. 2020. A review on biosorptive removal of dyes and heavy metals from wastewater using watermelon rind as biosorbent. Environmental Advances 2 (12): 100007.https://doi.org/10.1016/j.envadv.2020.100007.
  • 16. Chai W.S., Jie Y.C., P.S.K., Muhammad M., Zahid M., Fawzi B., Shih-Hsin H.O, Pau L.S. 2021. Journal of Cleaner Production 296 (May): 126589. https://doi.org/10.1016/j.jclepro.2021.126589.
  • 17. Chen Y, Huan W., Wei Zhao, Siping H. 2018. Four Different kinds of peels as adsorbents for the removal of Cd (II) from aqueous solution: Kinetics, isotherm and mechanism. Journal of the Taiwan Institute of Chemical Engineers 88 (Jul.): 146‑51. https://doi.org/10.1016/j.jtice.2018.03.046.
  • 18. Cheng, Song, Yongzhi Liu, Baolin Xing, Xiaojing Qin, Chuangxiang Zhang, Hongying Xia. 2021. Lead and cadmium clean removal from wastewater by sustainable biochar derived from poplar saw dust. Journal of Cleaner Production 314 (Sept.): 128074. https://doi.org/10.1016/j.jclepro.2021.128074.
  • 19. Cimá-Mukul, C.A., Youness A., Mohamed A., Joel Vargas, Arlette A. Santiago, Jesús A. B-Z. 2019a. Ecoefficient biosorbent based on leucaena leucocephala residues for the simultaneous removal of Pb(II) and Cd(II) ions from water system: sorption and mechanism. Bioinorganic Chemistry and Applications 2019 (Jan.): e2814047. https://doi.org/10.1155/2019/2814047.
  • 20. De Gisi., S., Giusy L., Mariangela G., Michele N.. 2016. Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustainable Materials and Technologies 9(9): 10‑40. https://doi.org/10.1016/j.susmat.2016.06.002.
  • 21. Dey, S., S.R. Basha, G.V. Babu, T. Nagendra. 2021. Characteristic and biosorption capacities of orange peels biosorbents for removal of ammonia and nitrate from contaminated water. Cleaner Materials 1(12): 100001. https://doi.org/10.1016/j.clema.2021.100001.
  • 22. Dias M., João P., Bruno H., Paula F., Elaine F., Daniela T., Carlos V., Eduarda P. 2021. Nutshells as efficient biosorbents to remove cadmium, lead, and mercury from contaminated solutions. International Journal of Environmental Research and Public Health 18 (4): 1580. https://doi.org/10.3390/ijerph18041580.
  • 23. El Maaiden E., Youssef E.K., Khadija M., Abdel K. E.I, et Boubker N. 2019. Comparative study of phytochemical profile between ziziphus spina christi and ziziphus lotus from Morocco. Journal of Food Measurement and Characterization 13 (1): 121‑30. https://doi.org/10.1007/s11694-018-9925-y.
  • 24. El Maaiden, E., Youssef E.K., Nagib A.S. Qarah, Essamadi A. K., Moustaid K., Nasser B.. 2020. Genus Ziziphus: A comprehensive review on ethnopharmacological, phytochemical and pharmacological properties. Journal of Ethnopharmacology 259 (9): 112950. https://doi.org/10.1016/j.jep.2020.112950.
  • 25. El Messaoudi N., Dbik A., El Khomri M., Sabour A., Bentahar S., Lacherai A. 2017. Date stones of phoenix dactylifera and jujube shells of ziziphus lotus as potential biosorbents for anionic dye removal. International Journal of Phytoremediation 19 (11): 1047‑52. https://doi.org/10.1080/15226514.2017.1319331.
  • 26. El Messaoudi N., El Khomri M., Dbik A., Bentahar S., Lacherai A., Bakiz B. 2016. Biosorption of congo red in a fixed-bed column from aqueous solution using jujube shell: Experimental and mathematical modeling. Journal of Environmental Chemical Engineering 4 (4): 3848‑55. https://doi.org/10.1016/j.jece.2016.08.027.
  • 27. Febrianto J., Aline N. K., Jaka S., Yi-Hsu J., Nani I., Suryadi I.. 2009. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies. Journal of Hazardous Materials 162 (2‑3): 616‑45. https://doi.org/10.1016/j.jhazmat.2008.06.042.
  • 28. Feisther V.A., Júlio S.F., Fabíola V.H., Diego A. M., Antônio A.U.d.S., Selene M.A.G.U.S. 2019. Raw leaves and leaf residues from the extraction of essential oils as biosorbents for metal removal. Journal of Environmental Chemical Engineering 7 (3): 103047. https://doi.org/10.1016/j.jece.2019.103047.
  • 29. Ghedira K. 2013. Zizyphus lotus (L.) Desf. (Rhamnaceae): jujubier sauvage. Phytothérapie 11 (3): 149‑53. https://doi.org/10.1007/s10298-013-0776-8.
  • 30. Gryko K., Monika K., Grzegorz Ś. 2021. The Use of apple pomace in removing heavy metals from water and sewage. Environmental Sciences Proceedings 9 (1): 24. https://doi.org/10.3390/environsciproc2021009024.
  • 31. Hube S., Majid E., Kolbrún Fríða H., B.B., Margrét Á.B., Snærós A., Bing W. 2020. Direct membrane filtration for wastewater treatment and resource recovery: A review. Science of The Total Environment 710 (3): 136375. https://doi.org/10.1016/j.scitotenv.2019.136375.
  • 32. Keshri N., Oraon A., Gupta A.K. 2017. Langmuir isotherm over biosorption capacity of cadmium from cactus and banana peels. International Journal of Advanced Research in Engineering and Technology, 8, 75-82.
  • 33. Kikuchi T., Shuzo T. 2012. Biological removal and recovery of toxic heavy metals in water environment. Critical Reviews in Environmental Science and Technology 42 (10): 1007‑57. https://doi.org/10.1080/10643389.2011.651343.
  • 34. Kumar M., Alak K.S., Mohd. S. 2018. Study of sorption and desorption of Cd (II) from aqueous solution using isolated green algae chlorella vulgaris. Applied Water Science 8 (8): 225. https://doi.org/10.1007/s13201-018-0871-y.
  • 35. Kyzas G.Z., Kostas A.M. 2018. Flotation in water and wastewater treatment. Processes 6 (8): 116. https://doi.org/10.3390/pr6080116.
  • 36. Lazzari E., Tiago S., Marcelo C. Alexandre M., Carmem T.P., Aline N.S., Marco F.F., Thiago B., Elina B.C. 2018. Classification of biomass through their pyrolytic bio-oil composition using FTIR and PCA analysis. Industrial Crops and Products 111(1): 856‑64. https://doi.org/10.1016/j.indcrop.2017.11.005.
  • 37. Letaief T., Stefania G., Valentina L.M., Jamel M., Manef A., Tiezzi A., Elisa O. 2021. Chemical composition and biological activities of tunisian ziziphus lotus extracts: Evaluation of drying effect, solvent extraction, and extracted plant parts. Plants 10 (12): 2651. https://doi.org/10.3390/plants10122651.
  • 38. Lu J. 2022. Can the central environmental protection inspection reduce transboundary pollution? Evidence from river water quality data in China. Journal of Cleaner Production 332 (Jan.): 130030. https://doi.org/10.1016/j.jclepro.2021.130030.
  • 39. Lutzu G.A., Adriana C., Carolina C., Fabrizio D. C., Alessandro C., Nurhan T.D. 2021. Latest developments in wastewater treatment and biopolymer production by microalgae. Journal of Environmental Chemical Engineering 9 (1): 104926. https://doi.org/10.1016/j.jece.2020.104926.
  • 40. Mahmood U.H., Vishandas S., Ejaz R., Muhammad Y. 2015. Removal of Cd, Cr, and Pb from aqueous solution by unmodified and modified agricultural wastes. Environmental Monitoring and Assessment 187 (2): 19. https://doi.org/10.1007/s10661-014-4258-8.
  • 41. Marmouzi I., Mourad K., Meryem E.J., Abdelhakim B., Yahia C., Abdelaziz B., Yvan V.H., Myelabbes F.I. 2019. Antidiabetic, dermatoprotective, antioxidant and chemical functionalities in zizyphus lotus leaves and fruits. Industrial Crops and Products 132 (6): 134‑39. https://doi.org/10.1016/j.indcrop.2019.02.007.
  • 42. Mishra Vishal, C.B., Vijay K.A. 2010. Biosorption of Zn (II) onto the surface of non-living biomasses: a comparative study of adsorbent particle size and removal capacity of three different biomasses Water, Air, & Soil Pollution 211 (1): 489‑500. https://doi.org/10.1007/s11270-009-0317-0.
  • 43. Mukherjee S., Deepa K., M.J., Alicia K.A., Manish K. 2020. Low-cost bio-based sustainable removal of lead and cadmium using a polyphenolic bioactive indian curry leaf (Murraya koengii) powder. International Journal of Hygiene and Environmental Health 226 (5): 113471. https://doi.org/10.1016/j.ijheh.2020.113471.
  • 44. Parab H., M.S. 2010. Engineering a lignocellulosic biosorbent – coir pith for removal of cesium from aqueous solutions: Equilibrium and kinetic studies. Water Research 44 (3): 854‑60. https://doi.org/10.1016/j.watres.2009.09.038.
  • 45. Peng H., Jing G. 2020. Removal of chromium from wastewater by membrane filtration, chemical precipitation, ion exchange, adsorption electrocoagulation, electrochemical reduction, electrodialysis, electrodeionization, photocatalysis and nanotechnology: A review. Environmental Chemistry Letters 18 (6): 2055‑68. https://doi.org/10.1007/s10311-020-01058-x.
  • 46. Quyen V.T.I, Pham T.H., Jitae K., Dang M.T., Phan Q.T., Quyet V.L., Sung H.J., Tae Y.K. 2021. Biosorbent derived from coffee husk for efficient removal of toxic heavy metals from wastewater. Chemosphere 284 (12): 131312. https://doi.org/10.1016/j.chemosphere.2021.131312.
  • 47. Ramadoss R., Dhanasekaran S. 2019. Removal of divalent nickel from aqueous solution using blue-green marine algae: adsorption modeling and applicability of various isotherm models. Separation Science and Technology 54 (6): 943‑61. https://doi.org/10.1080/01496395.2018.1526194.
  • 48. Rambabu K., Bharath G., Fawzi B., Pau L.S. 2020. Biosorption performance of date palm empty fruit bunch wastes for toxic hexavalent chromium removal. Environmental Research 187 (août): 109694. https://doi.org/10.1016/j.envres.2020.109694.
  • 49. Saini S., Jaskaran K.G., Jagdeep K., Hridoy Ranjan S., Navdeep S., Inderpreet K., Jatinder K.K. 2020. Biosorption as environmentally friendly technique for heavy metal removal from wastewater. In: Fresh Water Pollution Dynamics and Remediation, (Eds.) H. Qadri, R.A. Bhat, M.A. Mehmood, G.H. Dar, 167‑181. Singapore: Springer. https://doi.org/10.1007/978-981-13-8277-2_10.
  • 50. Tang J., Chunhui Z., Xuelu S., Jiajun S., Jeffrey A.C.. 2019. Municipal wastewater treatment plants coupled with electrochemical, biological and bioelectrochemical technologies: opportunities and challenge toward energy self-sufficiency. Journal of Environmental Management 234 (mars): 396‑403. https://doi.org/10.1016/j.jenvman.2018.12.097.
  • 51. Tran H.N., Hoang C.N., Seung H.W., Tien V.N., Saravanamuthu V., Ahmad H.B., Jörg R., et al. 2019. Removal of various contaminants from water by renewable lignocellulose-derived biosorbents: a comprehensive and critical review. Critical Reviews in Environmental Science and Technology 49 (23): 2155‑2219. https://doi.org/10.1080/10643389.2019.1607442.
  • 52. Ungureanu, N., V. Vlăduț, G. Voicu. 2020. Water Scarcity and Wastewater Reuse in Crop Irrigation. Sustainability 12 (21): 9055. https://doi.org/10.3390/su12219055.
  • 53. Wang T., Jiyong Z., Hongtao L., Qin P., Huoming Z., Xingchang Z.. 2021. Adsorption characteristics and mechanisms of Pb2+ and Cd2+ by a new agricultural waste–caragana korshinskii biomass derived biochar. Environmental Science and Pollution Research 28 (11): 13800‑818. https://doi.org/10.1007/s11356-020-11571-9.
  • 54. WuM., Hongyu L., Chunping Y.. 2019. Effects of pretreatment methods of wheat straw on adsorption of Cd(II) from waterlogged paddy soil. International Journal of Environmental Research and Public Health 16(2): 205. https://doi.org/10.3390/ijerph16020205.
  • 55. Zhang H., Yueru Z., Ziwei W., Ying L.. 2021. Distribution characteristics, bioaccumulation and trophic transfer of heavy metals in the food web of grassland ecosystems. Chemosphere 278 (9): 130407. https://doi.org/10.1016/j.chemosphere.2021.130407.
  • 56. Zhao C., Junyuan Z., Yi Y., Liwei Y., Guohua X., Huanyu L., Pei W., Mingyuan W., Huaili Z. 2021. Application of coagulation/flocculation in oily wastewater treatment: A review. Science of The Total Environment 765 (4): 142795. https://doi.org/10.1016/j.scitotenv.2020.142795.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1e2f10ce-5b2f-4304-bf7d-9569c0a816dd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.