PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigations of reconstruction of passivation layer on stainless steel surface using AFM-based techniques

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Continuous development of stainless steel technology forced by the increase in the growing demands on the operating parameters of various stainless steel alloys, is the motivation for implementation of research for understanding the complexity of electrochemical processes ongoing on the surface of a material during various technological processes and during exploitation of the finished components. In this paper, the use of atomic force microscopy (AFM) is presented as a tool for observation of reconstruction process of passivation layers on the surface of previously electropolished stainless steel. For this purpose, a technique called nanoscratching was used, in which scratches are made on the surface of a material by means of diamond scanning probe, which violates the continuity of the passivation layer. Then, the dynamics of the process of reconstruction of that layer was assessed using continuous imaging of the scratched area in AFM semicontact mode. Studies of this type can be used to evaluate the impact of various factors on the spontaneous reconstruction of the passivation layer as well as possible susceptibility of the material on the course of corrosion processes initiated as a result of mechanical defects arising during operation of the material. By using the AFM, it was possible to observe changes in the depth of scratches with a subnanometer resolution. Obtained results proved that the presented AFM application allowed observation of the dynamics of passivation layer reconstruction process in a quantitative fashion, therefore it seems to be a very useful tool in the investigation of the impact of various conditions on this phenomenon. The results showed that changes in surface modification were occurring in a continuous manner. Changing dynamics of said process was presented. It should be underlined that no such experiments have been reported so far.
Wydawca
Rocznik
Strony
381--386
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
  • Active Students Association, SEP Branch No. 1 in Wrocław, M. Skłodowskiej-Curie 55/61, 50-369 Wrocław, Poland
autor
  • Active Students Association, SEP Branch No. 1 in Wrocław, M. Skłodowskiej-Curie 55/61, 50-369 Wrocław, Poland
autor
  • Active Students Association, SEP Branch No. 1 in Wrocław, M. Skłodowskiej-Curie 55/61, 50-369 Wrocław, Poland
  • Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, Grunwaldzka 55, 50-357 Wrocław, Poland
autor
  • Division of Electrotechnology and Materials Science, Electrotechnical Institute, M. Skłodowskiej-Curie 55/61, 50-369 Wrocław, Poland
Bibliografia
  • [1] LOCHYNSKI P., KOWALSKI M., SZCZYGIEL B., KUCZEWSKI K., Pol. J. Chem. Technol., 18 (2016), 76.
  • [2] LOCHYNSKI P., SIKORA A., SZCZYGIEL B., Surf. Eng., 33 (5) (2017), 395.
  • [3] KOSMAČ A., Elektropolerowanie stali nierdzewnych. Materialy i zastosowania, zeszyt 11, (Electrochemical TreatmentsofSteel.MaterialsandApplications,Volume 11), Euro Inox, Brussels, 2009.
  • [4] ROLLET F., MORLAT-THÉRIAS S., GARDETTE L.J., Polym. Degrad. Stabil., 94 (2009), 877.
  • [5] NOWICKI M., RICHTER A., WOLF B., KACZMAREK H., Polymer, 44 (2003), 6599.
  • [6] SIKORA A., GRABAREK A., MORON L., WALECKI M., KRYLA P., IOP Conf. Ser., 113 (2016), 12016.
  • [7] MIKŠOVÁ R., MACKOVÁ A., MALINSKÝ P., SLEPIČKA P., ŠVORČÍK V., Polym. Degrad. Stabil., 122 (2015), 110.
  • [8] SURESH B., MARUTHAMUTHU S., KHARE A., PALANISAMY N., MURALIDHARAN V.S., RAGUNATHAN R., KANNAN M., PANDIYARAJ K.N., J. Polym. Res., 18 (2011), 2175.
  • [9] RAVARI F., OMRANI A., ROSTAMI A. A., EHSANI M., Polym. Degrad. Stabil., 97 (2012), 929.
  • [10] CANETTA E., MONTIEL K., ADYA A.K.,Forensic.Sci. Int., 191 (2009), 6.
  • [11] RAMIACZEK-KRASOWSKA M., SZYSZKA A., PRAZMOWSKA J., PASZKIEWICZ R., TLACZALA M., Opt. Appl., 39 (2009), 711.
  • [12] BHUSHAN B., Wear, 259 (2005), 1507.
  • [13] JANG K., ISHIBASHI Y., IWATA D., SUGANUMA H., YAMADA T., TAKEMURA Y., J. Nanosci. Nanotechno., 11 (2011), 10945-8.
  • [14] TON-THAT C., SHARD A.G., BRADLEY R.H., Langmuir, 16 (2000), 2281.
  • [15] SIKORA A., Opt. Appl., 43 (2013), 163.
  • [16] SIKORA A., Meas. Sci. Technol., 25 (2014), 055401.
  • [17] KHURSHUDOV A.G., KATO K., KOIDE H., Wear, 203-204 (1997), 22.
  • [18] LIU J., NOTBOHM, J.K., CARPICK R.W., TURNER K.T., ACS Nano, 4 (2010), 3763.
  • [19] SU C., HUANG L., KJOLLER K., BABCOCK K., Ultramicroscopy, 97 (2003), 135.
  • [20] WANG H., XIE H., HU Z., WU D., CHEN P., Polym. Degrad. Stabil., 97 (2012), 1755.
  • [21] SIKORA A., IWAN A., High Perf. Polym., 24 (2012), 218.
  • [22] https://www.bruker.com/products/ surface-and-dimensional-analysis/ atomic-force-microscopes/modes/modes/ specialized-modes/nanoindent-nanoscratch. html, accessed on: 2017.04.29.
  • [23] http://www.imagemet.com/products/spip/, accessed on: 2017.03.01.
  • [24] ZIELINSKI W., PLOCINSKI T., KURZYDLOWSKI K.J., Mater. Charact., 104 (2015), 42.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1e25d866-8fdc-4c9c-851c-bd217981f3a6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.