Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article attempts to transfer information from the Point Nuisance Method (PNM) used in Poland in the issue of protection of buildings in mining areas, to the system of inference based on Bayesian formalism. For this purpose, all possible combinations occurring in PNM were selected. The number of numerically generated patterns was 6,718,464 cases. Then, based on Python package Scikit-Learn, a classification model was created in the form of the Naïve Bayes Classifier (NBC). The effectiveness of three methods used to build this type of decision-support system was analysed, from which the Categorical Multinomial Naive Bayes (CMNB) approach was finally selected. With the created classifier, its properties were verified in terms of quality of classify and generalization. For this purpose a general approach was used, analysing the level of accuracy of the model in relation to training and teaching data, and detailed, based on the analysis of the confusion matrix. Additionally, the operation of the created classifier was simulated to determine the optimal Laplace smoothing parameter α. The article ends with conclusions from the carried out calculations, in which an attempt was made to answer the question concerning potential reasons for incorrect classification of the created CMNB model. The discussion ends with a reference to the planned research, in which, among other things, the use of more complex Bayesian belief networks (BBN) is planned.
Wydawca
Czasopismo
Rocznik
Tom
Strony
117--127
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr.
Twórcy
autor
- AGH University of Science and Technology, Faculty of Mining Surveying and Environmental Engineering, Department of Engineering Surveying and Civil Engineering, al. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
- [1] J. Kwiatek, Probabilistyczna ocena niezawodności obiektów budowlanych na terenach górniczych. WUG Bezp. Pr. Ochr. Śr. w Gór. 6, 14-16 (2006).
- [2] J. Kwiatek, Obiekty budowlane na terenach górniczych. Główny Instytut Górnictwa, 2007.
- [3] J. Kwiatek, Ocena niezawodności budynków na terenach wstrząsów górniczych. Gór. Geol. 2, 5, 121-131 (2010).
- [4] J. Kwiatek at others, Ochrona obiektów budowlanych na terenach górniczych. Wydaw. GIG Katowice, 1997.
- [5] E. Popiołek, Ochrona terenóww górniczych. Wydawnictwa AGH, 2009.
- [6] K. Tajduś, New method for determining the elastic parameters of rock mass layers in the region of underground mining influence. Int. J. Rock Mech. Min. Sci. 46, 8, 1296-1305, (2009).
- [7] A.S. Nowak, K.R. Collins, Reliability of structures. CRC Press, 2012.
- [8] M. Lemaire, Structural reliability. John Wiley & Sons, 2013.
- [9] M. Kawulok, Szkody górnicze w budownictwie. Wydawnictwa Instytutu Techniki Budowlanej, 2010.
- [10] W. Mika, L. Chomacki, L. Słowik, Zasady oceny odporności budynków na ciągłe deformacje terenu. Przegląd Gór. 73 (2017).
- [11] J. Ostrowski, Deformacje powierzchni a zagrożenie uszkodzeniami budynków na terenach górniczych w ujęciu probabilistycznym. AGH Uczelniane Wydawnictwa Naukowo-Dydaktyczne, 2006.
- [12] J. Ostrowski, A. Ćmiel, The use of a logit model to predict the probability of damage to bullding structures in mining terrains. Arch. Min. Sci. 53, 2, 161-182 (2008).
- [13] A. Malinowska, Fuzzy logic-based approach to building damage risk assessment considering the social and economic value. Gospod. Surowcami Miner. 24 (2008).
- [14] K.P. Murphy, Machine learning: a probabilistic perspective. MIT press, 2012.
- [15] C.M. Bishop, Pattern recognition and machine learning. springer, 2006.
- [16] J. Rusek, K. Firek, Assessment of technical condition of prefabricated large-block building structures located in mining area using the naive bayes classifier. Int. Multidiscip. Sci. GeoConference SGEM Surv. Geol. Min. Ecol. Manag. 2, 109-116 (2016).
- [17] M. Witkowski, J. Rusek, Wykorzystanie probabilistycznych sieci neuronowych do wyznaczania ryzyka powstania szkód w budynkach poddanych wstrząsom górniczym. Przegląd Gór. 73, 1, 44-47 (2017).
- [18] J. Rusek, Support vector machines and probabilistic neural networks in the assessment of the risk of damage to water supply systems in mining areas. 2016.
- [19] K. Firek, Proposal for classification of prefabricated panel building damage intensity rate in mining areas. Arch. Min. Sci. 54, 3, 467-479 (2009).
- [20] F. Pedregosa et al., Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 12, 2825-2830 (2011).
- [21] D. Koller, N. Friedman, Probabilistic graphical models: principles and techniques. MIT press, 2009.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1e247f48-72bc-483f-90bd-ad95fa265677