PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the solutions to the problem of insufficiently large training datasets in image processing is data augmentation. This process artificially extends the size of training datasets to avoid overfitting. Generative Adversarial Networks yield that become increasingly difficult to differentiate from real images, until the differentiation is no longer possible. Thus, artificial images closely resembling original ones can be generated. Inclusion of artificial images contributes to improving the training process. Medical domain is one of the areas where data acquisition is burdened by many procedures, laws, and prohibitions. As a result the potential size of collected datasets is reduced. This article presents the results of training Convolutional Neural Networks on a artificially extended image datasets. The resulting classification accuracy on a cell classification task of models trained with images generated using the proposed method were increased by up to 12.9% in comparison to that of the model trained only with original dataset from the HErlev Pap smear dataset.
Twórcy
autor
  • Laboratory of Processing Systems of Microscopic Image Information, Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Ks. Trojdena 4, 02-109 Warsaw, Poland
  • Faculty of Electronics and Information Technology, Warsaw University of Technology, Warsaw, Poland
  • Sano Centre for Computational Medicine, Cracow, Poland
  • Laboratory of Processing Systems of Microscopic Image Information, Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Warsaw, Poland
  • Laboratory of Processing Systems of Microscopic Image Information, Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Warsaw, Poland
  • Laboratory of Processing Systems of Microscopic Image Information, Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Warsaw, Poland
  • Laboratory of Processing Systems of Microscopic Image Information, Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Warsaw, Poland
Bibliografia
  • [1] Basak Hritam, Kundu Rohit, Chakraborty Sukanta, Das Nibaran. Cervical cytology classification using PCA and GWO enhanced deep features selection. SN Computer Sci 2021;2(5). https://doi.org/10.1007/s42979-021-00741-2.
  • [2] Marinakis Yannis, Dounias Georgios, Jantzen Jan. Pap smear diagnosis using a hybrid intelligent scheme focusing on genetic algorithm based feature selection and nearest neighbor classification. Comput Biol Med Jan 2009;39(1):69–78. https://doi.org/10.1016/j.compbiomed.2008.11.006.
  • [3] Kurnianingsih, Khalid Hamed S. Allehaibi, Lukito Edi Nugroho, Widyawan, Lutfan Lazuardi, Anton Satria Prabuwono, and Teddy Mantoro. Segmentation and classification of cervical cells using deep learning. IEEE Access, 7: 116925–116941, 2019. doi: 10.1109/access.2019.2936017.
  • [4] Chankong Thanatip, Theera-Umpon Nipon, Auephanwiriyakul Sansanee. Automatic cervical cell segmentation and classification in pap smears. Comput Methods Programs Biomed Feb 2014;113(2):539–56. https://doi.org/10.1016/j.cmpb.2013.12.012.
  • [5] Win Kyi Pyar, Kitjaidure Yuttana, Hamamoto Kazuhiko, Aung Thet Myo. Computer-assisted screening for cervical cancer using digital image processing of pap smear images. Appl Sci Mar 2020;10(5):1800. https://doi.org/10.3390/app10051800.
  • [6] Md Mamunur Rahaman, Chen Li, Yudong Yao, Frank Kulwa, Xiangchen Wu, Xiaoyan Li, and Qian Wang. DeepCervix: A deep learning-based framework for the classification of cervical cells using hybrid deep feature fusion techniques. Computers in Biology and Medicine, 136: 104649, sep 2021. doi: 10.1016/j.compbiomed.2021.104649.
  • [7] Cervical cancer - who overview. https://www.who.int/healthtopics/cervical-cancer.
  • [8] Gauravi A Mishra, Sharmila A Pimple, and Surendra S Shastri. An overview of prevention and early detection of cervical cancers. Indian Journal of Medical and Paediatric Oncology, 32 (03): 125–132, Jul 2011. doi: 10.4103/0971-5851.92808.
  • [9] William Wasswa, Ware Andrew, Basaza-Ejiri Annabella Habinka, Obungoloch Johnes. A review of image analysis and machine learning techniques for automated cervical cancer screening from pap-smear images. Comput Methods Programs Biomed 2018;164:15–22. https://doi.org/10.1016/j.cmpb.2018.05.034.
  • [10] Sue J. Goldie, Jeremy D. Goldhaber-Fiebert, and Geoffrey P. Garnett. Chapter 18: Public health policy for cervical cancer prevention: The role of decision science, economic evaluation, and mathematical modeling. Vaccine, 24: S155–S163, Aug 2006. doi: 10.1016/j.vaccine.2006.05.112.
  • [11] Yang Daniel X, Soulos Pamela R, Davis Brigette, Gross Cary P, James BYu. Impact of widespread cervical cancer screening. Am J Clin Oncol Mar 2018;41(3):289–94. https://doi.org/10.1097/coc.0000000000000264.
  • [12] Dickinson James A, Stankiewicz Agata, Popadiuk Cathy, Pogany Lisa, Onysko Jay, Miller Anthony B. Reduced cervical cancer incidence and mortality in canada. BMC Public Health 2012;12(1). https://doi.org/10.1186/1471-2458-12-992. national data from 1932 to 2006.
  • [13] Plissiti Marina E, Nikou Christophoros. Cervical cell classification based exclusively on nucleus features. In: Lect. Notes Comput. Sci.. Berlin Heidelberg: Springer; 2012. p. 483–90.
  • [14] Peter Liptak and Robert Barnetson. Liquid-based cervical cytology in the united kingdom and south africa. Continuing Medical Education, 30 (2), 2012. ISSN 2078–5143. http://www.cmej.org.za/index.php/cmej/article/view/2301.
  • [15] Qureshi Sabuhi, Singh Uma, Anjum Neha Negi, Singh Nisha, Goel Madhumati, Srivastava Kirti. Comparative study between liquid-based cytology & conventional pap smear for cytological follow up of treated patients of cancer cervix. Indian J Med Res 2018;147(3):263.
  • [16] Atif A Hashmi, Samreen Naz, Omer Ahmed, Syed Rafay Yaqeen, Muhammad Irfan, Muhammad Ghani Asif, Anwar Kamal, and Naveen Faridi. Comparison of liquid-based cytology and conventional papanicolaou smear for cervical cancer screening: An experience from pakistan. Cureus, Dec 2020. doi: 10.7759/cureus.12293.
  • [17] Linda A. Liang, Thomas Einzmann, Arno Franzen, Katja Schwarzer, Gunther Schauberger, Dirk Schriefer, Kathrin Radde, Sylke R. Zeissig, Hans Ikenberg, Chris J.L.M. Meijer, Charles J. Kirkpatrick, Heinz Kölbl, Maria Blettner, and Stefanie J. Klug. Cervical cancer screening: Comparison of conventional pap smear test, liquid-based cytology, and human papillomavirus testing as stand-alone or cotesting strategies. Cancer Epidemiology Biomarkers & Prevention, 30 (3): 474–484, Nov 2020. doi: 10.1158/1055-9965.epi-20-1003.
  • [18] Kamineni Vasundhara, Nair Priti, Deshpande Ashok. Can LBC completely replace conventional pap smear in developing countries. J Obstetrics Gynecol India May 2018;69(1):69–76. https://doi.org/10.1007/s13224-018-1123-7.
  • [19] Samuel Ortega, Martin Halicek, Himar Fabelo, Raul Guerra, Carlos Lopez, Marylene Lejeune, Fred Godtliebsen, Gustavo M. Callico, and Baowei Fei. Hyperspectral imaging and deep learning for the detection of breast cancer cells in digitized histological images. In John E. Tomaszewski and Aaron D. Ward, editors, Medical Imaging 2020: Digital Pathology. SPIE, Mar 2020. doi: 10.1117/12.2548609.
  • [20] Vivek Kumar Singh, Hatem A. Rashwan, Santiago Romani, Farhan Akram, Nidhi Pandey, Md. Mostafa Kamal Sarker, Adel Saleh, Meritxell Arenas, Miguel Arquez, Domenec Puig, and Jordina Torrents-Barrena. Breast tumor segmentation and shape classification in mammograms using generative adversarial and convolutional neural network. Expert Systems with Applications, 139: 112855, Jan 2020. doi: 10.1016/j.eswa.2019.112855.
  • [21] Hassan Loay, Abdel-Nasser Mohamed, Saleh Adel, Omer Osama A, Puig Domenec. Efficient stain-aware nuclei segmentation deep learning framework for multi-center histopathological images. Electronics 2021;10(8):954. https://doi.org/10.3390/electronics10080954.
  • [22] Zewen Li, Fan Liu, Wenjie Yang, Shouheng Peng, and Jun Zhou. A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE Transactions on Neural Networks and Learning Systems, pages 1–21, 2021. doi: 10.1109/tnnls.2021.3084827.
  • [23] Iwanowski Marcin, Korzyńska Anna. Segmentation of moving cells in bright field and epi-fluorescent microscopic image sequences. In: Computer Vision and Graphics. Berlin Heidelberg: Springer; 2010. p. 401–10. https://doi.org/10.1007/978-3-642-15910-7_46.
  • [24] Kangkana Bora, Manish Chowdhury, Lipi B. Mahanta, Malay Kumar Kundu, and Anup Kumar Das. Automated classification of pap smear images to detect cervical dysplasia. Computer Methods and Programs in Biomedicine, 138: 31–47, Jan 2017. doi: 10.1016/j.cmpb.2016.10.001.
  • [25] Zhang Ling, Le Lu, Nogues Isabella, Summers Ronald M, Liu Shaoxiong, Yao Jianhua. DeepPap: Deep convolutional networks for cervical cell classification. IEEE J Biomed Health Inform Nov 2017;21(6):1633–43. https://doi.org/10.1109/jbhi.2017.2705583.
  • [26] Jung Hwejin, Lodhi Bilal, Kang Jaewoo. An automatic nuclei segmentation method based on deep convolutional neural networks for histopathology images. BMC Biomed Eng 2019; 1(1). https://doi.org/10.1186/s42490-019-0026-8.
  • [27] Michael Majurski, Petru Manescu, Sarala Padi, Nicholas Schaub, Nathan Hotaling, Carl Simon, and Peter Bajcsy. Cell image segmentation using generative adversarial networks, transfer learning, and augmentations. In 2019 IEEE/CVFConference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, jun 2019. doi: 10.1109/cvprw.2019.00145.
  • [28] Neff, Thomas, Payer, Christian, Štern, Darko, and Urschler, Martin. Generative adversarial networks to synthetically augment data for deep learning based image segmentation, 2018.
  • [29] Mustafa Wan Azani, Halim Afiqah, Rahman Khairul Shakir Ab. A narrative review: Classification of pap smear cell image for cervical cancer diagnosis. Oncologie 2020;22(2):53–63. https://doi.org/10.32604/oncologie.2020.013660.
  • [30] Mohammed Mohammed Aliy, Abdurahman Fetulhak, Ayalew Yodit Abebe. Single-cell conventional pap smear image classification using pre-trained deep neural network architectures. BMC Biomed Eng 2021;3(1). https://doi.org/10.1186/s42490-021-00056-6.
  • [31] Khened Mahendra, Kori Avinash, Rajkumar Haran, Krishnamurthi Ganapathy, Srinivasan Balaji. A generalized deep learning framework for whole-slide image segmentation and analysis. Sci Rep 2021;11(1). https://doi.org/10.1038/s41598-021-90444-8.
  • [32] Manna Ankur, Kundu Rohit, Kaplun Dmitrii, Sinitca Aleksandr, Sarkar Ram. A fuzzy rank-based ensemble of CNN models for classification of cervical cytology. Sci Rep 2021;11(1). https://doi.org/10.1038/s41598-021-93783-8.
  • [33] Moshkov Nikita, Mathe Botond, Kertesz-Farkas Attila, Hollandi Reka, Horvath Peter. Test-time augmentation for deep learning-based cell segmentation on microscopy images. Sci Rep 2020;10(1). https://doi.org/10.1038/s41598-020-61808-3.
  • [34] Martin Halicek, Samuel Ortega, Himar Fabelo, Carlos Lopez, Marylene Lejaune, Gustavo M. Callico, and Baowei Fei. Conditional generative adversarial network for synthesizing hyperspectral images of breast cancer cells from digitized histology. In John E. Tomaszewski and Aaron D. Ward, editors, Medical Imaging 2020: Digital Pathology. SPIE, Mar 2020. doi: 10.1117/12.2549994.
  • [35] Chen Xu, Lian Chunfeng, Wang Li, Deng Hannah, Kuang Tianshu, Fung Steve H, Gateno Jaime, Shen Dinggang, Xia James J, Yap Pew-Thian. Diverse data augmentation for learning image segmentation with cross-modality annotations. Med Image Anal 2021;71 . https://doi.org/10.1016/j.media.2021.102060 102060.
  • [36] Shi Jun, Wang Ruoyu, Zheng Yushan, Jiang Zhiguo, Zhang Haopeng, Lanlan Yu. Cervical cell classification with graph convolutional network. Comput Methods Programs Biomed Jan 2021;198. https://doi.org/10.1016/j.cmpb.2020.105807105807.
  • [37] Md Mamunur Rahaman, Chen Li, Xiangchen Wu, Yudong Yao, Zhijie Hu, Tao Jiang, Xiaoyan Li, and Shouliang Qi. A survey for cervical cytopathology image analysis using deep learning. IEEE Access, 8: 61687–61710, 2020. doi: 10.1109/access.2020.2983186.
  • [38] Abid Sarwar, Abrar Ali Sheikh, Jatinder Manhas, and Vinod Sharma. Segmentation of cervical cells for automated screening of cervical cancer: a review. Artificial Intelligence Review, 53 (4): 2341–2379, Jul 2019. doi: 10.1007/s10462-019-09735-2.
  • [39] Shyamali Mitra, Nibaran Das, Soumyajyoti Dey, Sukanta Chakraborty, Mita Nasipuri, and Mrinal Kanti Naskar. Cytology image analysis techniques toward automation. ACM Computing Surveys, 54 (3): 1–41, jun 2021. doi: 10.1145/3447238.
  • [40] Gençtav Asli, Aksoy Selim, Önder Sevgen. Unsupervised segmentation and classification of cervical cell images. Pattern Recogn Dec 2012;45(12):4151–68. https://doi.org/10.1016/j.patcog.2012.05.006.
  • [41] Camargo Luz H, Diaz Gloria, Romero Eduardo. Pap smear cell image classification using global MPEG-7 descriptors. Diagnostic Pathology 2013;8(S1). https://doi.org/10.1186/1746-1596-8-s1-s38.
  • [42] Srikanth Ragothaman, Sridharakumar Narasimhan, Madivala G Basavaraj, and Rajan Dewar. Unsupervised segmentation of cervical cell images using gaussian mixture model. In 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, jun 2016. doi: 10.1109/cvprw.2016.173.
  • [43] William Wasswa, Ware Andrew, Basaza-Ejiri Annabella Habinka, Obungoloch Johnes. A pap-smear analysis tool (PAT) for detection of cervical cancer from pap-smear images. BioMed Eng OnLine 2019;18(1). https://doi.org/10.1186/s12938-019-0634-5.
  • [44] Jan Jantzen, Jonas Norup, Georgios Dounias, and Beth Bjerregaard. Pap-smear benchmark data for pattern classification. In Proc. NiSIS 2005, pages 1–9. NiSIS, 2005. Nature inspired Smart Information Systems: EU coordination action, Nisis 2005; Conference date: 01–01-2005.
  • [45] Marina E. Plissiti, P. Dimitrakopoulos, G. Sfikas, Christophoros Nikou, O. Krikoni, and A. Charchanti. Sipakmed: A new dataset for feature and image based classification of normal and pathological cervical cells in pap smear images. In 2018 25th IEEE International Conference on Image Processing (ICIP). IEEE, Oct 2018. doi: 10.1109/icip.2018.8451588.
  • [46] Mariana T. Rezende, Raniere Silva, Fagner de O. Bernardo, Alessandra H.G. Tobias, Paulo H.C. Oliveira, Tales M. Machado, Caio S. Costa, Fatima N.S. Medeiros, Daniela M. Ushizima, Claudia M. Carneiro, and Andrea G.C. Bianchi. Cric searchable image database as a public platform for conventional pap smear cytology data. Scientific Data, 8 (1), jun 2021. doi: 10.1038/s41597-021-00933-8.
  • [47] Karthigai Lakshmi G, Krishnaveni K. Feature extraction and feature set selection for cervical cancer diagnosis. Indian. J Sci Technol 2016;9(19). https://doi.org/10.17485/ijst/2016/v9i19/93881.
  • [48] Cytopathology of the uterine cervix - digital atlas. https://screening.iarc.fr/atlasclassifbethesda.php.
  • [49] Ritu Nayar and David C. Wilbur, editors. The Bethesda System for Reporting Cervical Cytology. Springer International Publishing, 2015. doi: 10.1007/978-3-319-11074-5.
  • [50] Wilbur DC, Nayar R. Bethesda 2014: improving on a paradigm shift. Cytopathology Dec 2015;26(6):339–42. https://doi.org/10.1111/cyt.12300.
  • [51] Russ John. The Image processing handbook. Boca Raton, FL: CRC Press LLC; 2016, ISBN 9781138747494.
  • [52] E.R. Davies. Computer Vision: Principles, Algorithms, Applications, Learning. ACADEMIC PR INC, November 2017. ISBN 012809284X. https://www.ebook.de/de/product/29752346/e_r_davies_computer_vision_principles_algorithms_applications_learning.html.
  • [53] Richard E. Woods Rafael C. Gonzalez. Digital Image Processing, Global Edition. Pearson, April 2018. ISBN 1292223049. https://www.ebook.de/de/product/30712961/rafael_c_gonzalez_richard_e_woods_digital_image_processing_global_edition.html.
  • [54] Shorten Connor, Khoshgoftaar Taghi M. A survey on image data augmentation for deep learning. J Big Data 2019;6(1). https://doi.org/10.1186/s40537-019-0197-0.
  • [55] George C. Stockman Linda G. Computer Vision: Shapiro; 2001, ISBN 978-0130307965.
  • [56] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data augmentation.
  • [57] Hojjat Salehinejad, Shahrokh Valaee, Timothy Dowdell, and Joseph Barfett. Image augmentation using radial transform for training deep neural networks.
  • [58] Adrian Galdran, Aitor Alvarez-Gila, Maria Ines Meyer, Cristina L. Saratxaga, Teresa Araújo, Estibaliz Garrote, Guilherme Aresta, Pedro Costa, A.M. Mendonça, and Aurélio Campilho. Data-driven color augmentation techniques for deep skin image analysis.
  • [59] Moreno-Barea Francisco J, Jerez José M, Franco Leonardo. Improving classification accuracy using data augmentation on small data sets. Expert Syst Appl 2020;161 . https://doi.org/10.1016/j.eswa.2020.113696113696.
  • [60] Mohamed Elgendi, Muhammad Umer Nasir, Qunfeng Tang, David Smith, John-Paul Grenier, Catherine Batte, Bradley Spieler, William Donald Leslie, Carlo Menon, Richard Ribbon Fletcher, Newton Howard, Rabab Ward, William Parker, and Savvas Nicolaou. The effectiveness of image augmentation in deep learning networks for detecting COVID-19: A geometric transformation perspective. Frontiers in Medicine, 8, Mar 2021. doi: 10.3389/fmed.2021.629134.
  • [61] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks.
  • [62] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for improved quality, stability, and variation.
  • [63] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired image-to-image translation using cycle-consistent adversarial networks.
  • [64] Per Welander, Simon Karlsson, and Anders Eklund. Generative adversarial networks for image-to-image translation on multi-contrast mr images - a comparison of cyclegan and unit.
  • [65] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets.
  • [66] Isola Phillip, Zhu Jun-Yan, Zhou Tinghui, Efros Alexei A. Image-to-image translation with conditional adversarial networks. CVPR 2017.
  • [67] Agnieszka Mikolajczyk and Michal Grochowski. Data augmentation for improving deep learning in image classification problem. In 2018 International Interdisciplinary PhD Workshop (IIPhDW). IEEE, May 2018. doi: 10.1109/iiphdw.2018.8388338.
  • [68] Frid-Adar Maayan, Diamant Idit, Klang Eyal, Amitai Michal, Goldberger Jacob, Greenspan Hayit. GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing Dec 2018;321:321–31. https://doi.org/10.1016/j.neucom.2018.09.013.
  • [69] Han Changhee, Rundo Leonardo, Araki Ryosuke, Nagano Yudai, Furukawa Yujiro, Mauri Giancarlo, Nakayama Hideki, Hayashi Hideaki. Combining noise-to-image and image-toimage GANs: Brain MR image augmentation for tumor detection. IEEE Access 2019;7:156966–77. https://doi.org/10.1109/access.2019.2947606.
  • [70] Pandey Siddharth, Singh Pranshu Ranjan, Tian Jing. An image augmentation approach using two-stage generative adversarial network for nuclei image segmentation. Biomed Signal Process Control 2020;57. https://doi.org/10.1016/j.bspc.2019.101782 101782.
  • [71] Phillip Chlap, Hang Min, Nym Vandenberg, Jason Dowling, Lois Holloway, and Annette Haworth. A review of medical image data augmentation techniques for deep learning applications. Journal of Medical Imaging and Radiation Oncology, 65 (5): 545–563, jun 2021. doi: 10.1111/1754-9485.13261.
  • [72] Palanisamy Vijayanand Sellamuthu, Athiappan Rajiv Kannan, Nagalingam Thirugnanasambandan. Pap smear based cervical cancer detection using residual neural networks deep learning architecture. Concurrency Computation: Practice Exp 2021;34(4). https://doi.org/10.1002/cpe.6608.
  • [73] Jang J-SR. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Systems, Man, Cybern 1993;23(3):665–85. https://doi.org/10.1109/21.256541.
  • [74] Dey Soumyajyoti, Das Soham, Ghosh Swarnendu, Mitra Shyamali, Chakrabarty Sukanta, Das Nibaran. SynCGAN: Using learnable class specific priors to generate synthetic data for improving classifier performance on cytological images. In: Communications in Computer and Information Science. Springer Singapore; 2020. p. 32–42. https://doi.org/10.1007/978-981-15-8697-2_3.
  • [75] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition.
  • [76] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. Rethinking the inception architecture for computer vision. CoRR, abs/1512.00567, 2015.http://arxiv.org/abs/1512.00567.
  • [77] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. December 2015.
  • [78] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely connected convolutional networks. August 2016.
  • [79] Xiaqing Li, Guangyan Zhang, H. Howie Huang, Zhufan Wang, and Weimin Zheng. Performance analysis of GPU-based convolutional neural networks. In 2016 45th International Conference on Parallel Processing (ICPP). IEEE, Aug 2016. doi: 10.1109/icpp.2016.15.
  • [80] Herlev pap smear database website. http://mde-lab.aegean.gr/index.php/downloads.
  • [81] Bejani Mohammad Mahdi, Ghatee Mehdi. A systematic review on overfitting control in shallow and deep neural networks. Artif Intell Rev Mar 2021;54(8):6391–438. https://doi.org/10.1007/s10462-021-09975-1.
  • [82] Ying Xue. An overview of overfitting and its solutions. J Phys: Conf Ser 2019;1168 . https://doi.org/10.1088/1742-6596/1168/2/022022 022022.
  • [83] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. Semantic image synthesis with spatially-adaptive normalization.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1e245182-2275-4aa0-812d-2f4e6168f5d4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.