PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Parametric characterization of a mesomechanic kinematic in plain and twill weave 2/2 reinforced composites by FE-calculations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: A parametric characterization of a mesomechanic kinematic caused by ondulation in fabric reinforced composites is investigated by numerical investigations. Design/methodology/approach: Due to the definition of plain representative sequences of balanced plain-weave and twill-weave 2/2 fabric reinforced single layers based on sines the variable geometric parameters are the amplitude and the length of the ondulation. Findings: The mesomechanic kinematic can be observed in the FE analyses for both kinds of fabric constructions. Research limitations/implications: The FE analyses consider elasticity and contraction due to Poisson effects, respectively, of the model under selected longitudinal strains. Practical implications: The results are evaluated at relevant positions on the centre-line of the ondulated warp-yarn of the plain representative model. A direct and linear coupling in case of the transversal kinematic behaviour, and thereby a corresponding definite reduction of the evaluated longitudinal strains in terms of the difference of the applied and determined longitudinal strains is identified. Originality/value: Both characteristic purely kinematic reactions due to geometric constraints directly depend on the introduced degree of ondulation. This non-dimensional parameter relates amplitude and length of one complete ondulation, and thus represents the intensity of the ondulation of the respective fabric construction.
Rocznik
Strony
20--38
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
  • Laboratory of Composite Technology (LFT), Department of Mechanical Engineering, Ostbayerische Technische Hochschule Regensburg (OTH.R), Galgenbergstrasse 30, 93053 Regensburg, Germany
autor
  • Laboratory of Composite Technology (LFT), Department of Mechanical Engineering, Ostbayerische Technische Hochschule Regensburg (OTH.R), Galgenbergstrasse 30, 93053 Regensburg, Germany
autor
  • Institute of Engineering Mechanics and Structural Analysis, Department of Civil Engineering and Environmental Sciences, University of the Bundeswehr Munich, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany
Bibliografia
  • [1] N.K. Naik, P.S. Shembekar, Elastic Behavior of Woven Fabric Composites: I-Lamina Analysis, Journal of Composite Materials 26/15 (1992) 2196-2225, DOI: https://doi.org/10.1177/002199839202601502.
  • [2] S.K. Mital, L.N. Murthy, C.C. Chamis, Simplified Micromechanics of Plain Weave Composites, NASA Technical Memorandum 107165, 1996, 1-12.
  • [3] H. Guan, Micromechanical analysis of viscoelastic damping in woven fabric-reinforced polymer matrix composites, PhD Thesis, Wayne State University, Detroit (Michigan, USA), 1997, Paper AAI9725829, http://digitalcommons.wayne.edu/dissertations/AAI97 25829.
  • [4] J.H. Byun, The analytical characterization of 2-D braided textile composites, Composites Science and Technology 60/5 (2000) 705-716, DOI: https://doi.org/10.1016/S0266-3538(99)00173-6.
  • [5] Z.M. Huang, The mechanical properties of composites reinforced with woven and braided fabrics, Composites Science and Technology 60/4 (2000) 479-498, DOI: https://doi.org/10.1016/S0266-3538 (99)00148-7.
  • [6] H. Guan, R.F. Gibson, Micromechanic Models for Damping in Woven Fabric-Reinforced Polymer Matrix Composites, Journal of Composite Materials 35/16 (2001) 1417-1434, DOI: https://doi.org/10.1106/NEJY-H235-66RD-G635.
  • [7] A. Tabiei, W. Yi, Comparative study of predictive methods for woven fabric composite elastic properties, Composite Structures 58/1 (2002) 149-164, DOI: 10.1016/S0263-8223(02)00028-4.
  • [8] B.H. Le Page, F.J. Guild, S.L. Ogin, P.A. Smith, Finite element simulation of woven fabric composites, Composites: Part A 35/7-8 (2004) 861-872, DOI: 10.1016/j.compositesa.2004.01.017.
  • [9] B. Wielage, T. Müller, T. Lampke, U. Richter, E. Kieselstein, G. Leonhardt, Simulation der elastischen Eigenschaften gewebeverstärkter Verbundwerkstoffe unter Berücksichtigung der Mikrostruktur, in: M. Schlimmer (Ed.), Proceedings of the 15th Symposium Verbundwerkstoffe und Werkstoffverbunde, Kassel, Germany, Weinheim, Wiley VCH Verlag, 2005, 441-446, http://www.dgm.de/download/tg/706/706_77.pdf, (in German).
  • [10] E.J. Barbero, J. Trovillion, J.A. Mayugo, K.K. Sikkil, Finite Element Modeling of Plain Weave Fabrics from Photomicrograph Measurements, Composite Structures 73/1 (2006) 41-52, DOI: https://doi.org/ 10.1016/j.compstruct.2005.01.030.
  • [11] D. Ballhause, Diskrete Modellierung des Verformungs- und Versagensverhaltens von Gewebemembranen, PhD Thesis, University of Stuttgart, Germany, 2007 (in German).
  • [12] T. Matsuda, Y. Nimiya, N. Ohno, M. Tokuda, Elastic- viscoplastic behavior of plain-woven GFRP laminates: Homogenization using a reduced domain of anlysis, Composite Structures 79/4 (2007) 493-500, DOI: https://doi.Org/10.1016/j.compstruct.2006.02.008.
  • [13] Y. Nakanishi, K. Matsumoto, M. Zako, Y. Yamada, Finite element analysis of vibration damping for woven fabric composites, Key Engineering Materials 334-335 (2007) 213-216, DOI: https://doi.org/ 10.4028/www.scientific.net/KEM.334-335.213.
  • [14] P. Badel, E. Vidal-Salle, P. Boisse, Computational determination of in-plane shear mechanic behaviour of textile composite reinforcements, Computational Material Science 40/4 (2007) 439-448, DOI: https://doi.Org/10.1016/j.commatsci.2007.01.022.
  • [15] G. Hivet, P. Boisse, Consistent mesoscopic mechanical behavior model for woven composite reinforcements in biaxial tension, Composites Part B: Engineering 39/2 (2008) 345-361, DOI: https://doi.Org/10.1016/j.compositesb.2007.01.011.
  • [16] A. El Mahi, M. Assarar, Y. Sefrani, J.-M. Berthelot, Damping analysis of orthotropic composite materials and laminates, Composites Part B: Engineering 39/7-8 (2008) 1069-1076, DOI: https://doi.org/10.1016/ j.compositesb.2008.05.003.
  • [17] P. Szablewski, Sinusoidal Model of Fiber-reinforced Plastic Composite, Journal of Industrial Textiles 38/4 (2009) 277-288, D01:10.1177/1528083708098914.
  • [18] G. Hivet, A.V. Duong, A contribution to the analysis of the intrinsic shear behavior of fabrics, Journal of Composite Materials 45/6 (2010) 695-716, DOI: https://doi.org/10.1177/0021998310382315.
  • [19] M. Ansar, W. Xinwei, Z. Chouwei, Modeling strategies of 3D woven composites - A review, Composite Structures 93/8 (2011) 1947-1963, DOI: https://doi.Org/10.1016/j.compstruct.2011.03.010.
  • [20] J. Kreikmeier, D. Chrupalla, I.A. Khattab, D.S. Krause, Experimentelle und numerische Untersuchungen von CFK mit herstellungsbedingten Fehlstellen, in: Proceedings of the 10. Magdeburger Maschinenbau-Tage, Magdeburg, Germany, 2011 (in German).
  • [21] P. Ottawa, M. Romano, I. Ehrlich, M. Wagner, N. Gebbeken, The influence of ondulation in fabric reinforced composites on dynamic properties in a mesoscopic scale in composites reinforced with fabrics on the damping behaviour, Proceedings of the 11th LS-DYNA Forum, Ulm, Germany, 2012, 171-172, http://www.dynamore.de/de/download/papers/ls- dyna- forum-2012.
  • [22] M. Romano, I. Ehrlich, N. Gebbeken, Parametric characterization of a mesomechanic kinematic caused by ondulation in fabric reinforced composites: analytical and numerical investigations, Fracture and Structural Integrity (FIS) 11/39 (2017) 226-247, http ://www. fracturae.com/index.php/fis/article/view/I
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1e1f88ea-de4d-4fe2-9bdf-7f40d2123e0a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.