PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Effect of Heavy Metals on the Growth of Waterborne Escherichia coli of Municipal Landfill Origin

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ metali ciężkich na wzrost Escherichia coli izolowanych z wód pochodzących ze składowiska odpadów komunalnych
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to assess the sensitivity of Escherichia coli isolates originating from a municipal waste landfill to the selected heavy metals. The analyses were conducted using environmental strains, isolated from surface water – a stream flowing along the landfill and from leachate and the observations were compared to the reaction of a reference strain EC ATCC 25922. The growth rate of bacterial cultures was evaluated in the liquid medium supplemented with 0.02; 0.1 and 0.5 mg dm–3 of heavy metal salts: chromium, zinc, cadmium, copper, lead and mercury. The bacterial growth was examined turbidimetrically every 24 hours for 5 days. The performed study showed differences between the examined isolates in their response to the addition of the heavy metals in the liquid medium. Additionally, varied intensity of the heavy metals’ effect on bacterial growth was observed, with the weakest growth inhibition being recorded in the case of lead, while chromium and mercury causing the greatest growth inhibition of bacterial strains.
PL
Celem pracy była ocena wrażliwości izolatów Escherichia coli, pochodzących ze składowiska odpadów komunalnych na działanie wybranych metali ciężkich. Badaniu poddano izolaty środowiskowe, pochodzące z wody powierzchniowej – strumienia płynącego wzdłuż składowiska oraz z odcieków, a także szczep wzorcowy EC ATCC 25922. Ocenie poddano tempo wzrostu kultur bakteryjnych w podłożu płynnym z dodatkiem 0,02; 0,1 oraz 0,5 mg dm–3 soli metali ciężkich: chromu, cynku, kadmu, miedzi, ołowiu i rtęci. The Effect of Heavy Metals on the Growth of Waterborne Escherichia coli... 183 Wzrost bakterii badano turbidymetrycznie w odstępach 24-godzinnych przez okres 5 dni. Na podstawie przeprowadzonych badań stwierdzono różnice pomiędzy badanymi izolatami w ich reakcji na obecność badanych metali ciężkich w podłożu. Zaobserwowano także różną intensywność działania metali, przy czym najsłabsze zahamowanie wzrostu bakterii stwierdzono w przypadku ołowiu, natomiast najsilniejszy efekt hamujący miały chrom i rtęć.
Rocznik
Strony
173--184
Opis fizyczny
Bibliogr. 33 poz., wykr., tab.
Twórcy
autor
  • Department of Microbiology, University of Agriculture in Kraków, al. A. Mickiewicza 24/28, 30–059 Kraków, Poland, phone: +48 12 662 44 02
autor
  • Department of Microbiology, University of Agriculture in Kraków, al. A. Mickiewicza 24/28, 30–059 Kraków, Poland, phone: +48 12 662 44 02
  • Department of Agricultural Environment Protection, University of Agriculture in Kraków, al. A. Mickiewicza 21, 31–120 Kraków, Poland, phone: +48 12 662 44 02
Bibliografia
  • [1] Adamczyk I, Różańska B, Sobczyk M. Infrastruktura komunalna w 2014 r. (Community infrastructure in 2014) Główny Urząd Statystyczny. Warszawa; 2015. http://stat.gov.pl/obszary-tematyczne/ infrastruktura-komunalna-nieruchomosci/nieruchomosci-budynki-infrastruktura-komunalna/infrastrukturakomunalna-w-2014-r-,3,12.html.
  • [2] Domska D, Warechowska M. The effect of the municipal waste landfill on the heavy metals content in soil. Contemp. Probl Manage Environ Protect. 2009;4:95-105. http://www.uwm.edu.pl/environ/vol04/vol_04_chapter06.pdf.
  • [3] Akpor OB, Muchie M. Remediation of heavy metals in drinking water and wastewater treatment systems: Processes and applications. Int J Phys Sci. 2010; 5(12):1807-1817. http://www.academicjournals.org/article/article1380814369_Akpor%20and%20Muchie.pdf.
  • [4] Bruins MR, Kapil S, Oehme FW. Microbial resistance to metals in the environment. Ecotoxicol Environ Saf. 2000;45:198-207. DOI: 10.1006/eesa.1999.186.
  • [5] Abskharon RNN, Hassan SHA, Gad El-Rab SMF, Shoreit AAM. Heavy metal resistant E. coli isolated from wastewater sites in Assiut City, Egypt. Bull Environ Contam Toxicol. 2008;81:309-315. DOI 10.1007/s00128-008-9494-6.
  • [6] Adeolu AO, Ada OV, Gbenga AA, Adebayo OA. Assessment of groundwater contamination by leachate near a municipal solid waste landfill. Afr J Environ Sci Technol. 2011;5(11):933-940. DOI: 10.5897/AJEST11.272.
  • [7] Wyszkowska J, Kucharski J, Borowik A, Boros E. Response of bacteria to soil contamination with heavy metals. J Elementol. 2008;13:443-453. http://www.uwm.edu.pl/jold/poj1332008/jurnal-15.pdf.
  • [8] Tobor-Kapłon MA, Bloem J, Romkens PFAM, d’Ruiter PC. Functional stability of microbial communities in contaminated soils. Oikos. 2005;111:119-129. DOI: 10.1111/j.0030-1299.2005.13512.x.
  • [9] Lenart-Boroń A, Wolny-Koładka K. Heavy metal concentration and the occurrence of selected microorganisms in soils of a steelworks area in Poland. Plant Soil Environ. 2015;61(6):273-278. DOI: 10.17221/217/2015-PSE.
  • [10] Wuertz S, Mergeay M. The impact of heavy metals on soil microbial communities and their activities. In: van Elsas JD, Trevors JT, Wellington EMH (eds). Modern soil microbiology. New York: Marcel Dekker; 1997.
  • [11] Nies DH. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev. 2003;27:313-339. DOI: http://dx.doi.org/10.1016/S0168-6445(03)00048-2.
  • [12] Grisey E, Belle E, Dat J, Mudry J, Aleya L. Survival of pathogenic and indicator organisms in groundwater and landfill leachate through coupling bacterial enumeration with tracer tests. Desalination. 2010;261(1-2):162-168. DOI:10.1016/j.desal.2010.05.007.
  • [13] Flores-Tena FJ, Guerrero-Barrera AL, Avelar-Gonzalez FJ, Ramierz-Lopez EM, Martinez-Saldańa MC. Pathogenic and opportunistic Gram-negative bacteria in soil, leachate and air in San Nicolas landfill at Aguascalientes, Mexico. Rev Latinoam Micr. 2007;49:25-30. http://www.medigraphic.com/pdfs/lamicro/mi-2007/mi07-1_2e.pdf
  • [14] Palmisano AC, Barlaz MA. Microbiology of solid waste. Boca Raton: CRC Press; 1996.
  • [15] Röling WFM, van Breukelen BM, Braster M, Lin B, van Verseveld HW. Relationships between Microbial Community Structure and Hydrochemistry in a Landfill Leachate-Polluted Aquifer. Appl Environ Microbiol. 2001; 67(10):4619-4629. DOI: 10.1128/AEM.67.10.4619-4629.2001.
  • [16] Szpadt R. Usuwanie i oczyszczanie odcieków ze składowisk odpadów komunalnych. (Removal and treatment of leachate from municipal landfill sites) Przegl Komunal. 2006;12:60-66. http://e-czytelnia.abrys.pl/przeglad-komunalny/2006-12-256/dodatki-zeszyty-komunalne-2968/usuwanie-i-oczyszczanie-odciekow-ze-skladowisk-odpadow-komunalnych-6964.
  • [17] Frączek K, Ropek D. Municipal waste dumps as the microbiological threat to the natural environment. Ecol Chem Eng S. 2011;18:93-110. http://tchie.uni.opole.pl/freeECE/S_18_1/ FraczekRopek_18(S1).pdf
  • [18] Voica C, Kovacs MH, Dehelean A, Ristoiu D, Iordache A, ICP-MS determinations of heavy metals in surface waters from Transylvania. Rom J Phys. 2012;75:1184-1193. http://www.nipne.ro/rjp/2012_57_7-8/1184_1193.pdf
  • [19] Ferng WB, Parker GA. Spectrophotometric determination of Chromium as the chromium-peroxo-4-(2-pyridylazo) resorcinol complex. Fresenius Z Anal Chem. 1980;304,382-384. http://download.springer.com/static/pdf/172 /art%253A10.1007%252FBF00480608.pdf?originUrl=http%3A%2F%2 Flink. springer.com%2Farticle%2F10.1007%2FBF00480608&token2=exp=1456483196~acl=%2Fstatic%2Fpdf%2F172%2Fart%25253A10.1007%25252FBF00480608.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Farticle%252F10.1007%252 FBF00480608*~hmac=8a2f75e1c369dc78cfa7e83acbe8158c74a0d71d93c9ee56652702954abf5f6e.
  • [20] ISO 12846 Water quality – Determination of mercury – Method using atomic absorption spectrometry (AAS) with and without enrichment. International Organization for Standardization, Geneva, Switzerland; 2012. http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=51964.
  • [21] Ettler V, Mihaljevic M, Matura M, Skalova M, Sebek O, Bezdicka P. Temporal variation of trace elements in waters polluted by municipal solid waste landfill leachate. Bull Environ Contam Toxicol. 2008;80:274-279. DOI: 10.1007/s00128-008-9361-5.
  • [22] Pablos MV, Martini F, Fernandez C, Babin MM, Herraez I, Miranda J, et al. Correlation between physicochemical and ecotoxicological approaches to estimate landfill leachates toxicity. Waste Manage. 2011;31:1841-1847. DOI: 10.1016/j.wasman.2011.03.022.
  • [23] Vaverková M, Adamcová D. Evaluation of landfill pollution with special emphasis on heavy metals. J Ecol Eng S. 2014;15(4):1-6. DOI: 10.12911/22998993.1094972.
  • [24] The Minister of Environment Regulation dated November 9th 2011, for the classification of bodies of surface water and environmental quality standards for priority substances (Journal of Laws of 2011, No. 257, item 1545). http://isap.sejm.gov.pl/DetailsServlet?id=WDU20112571545.
  • [25] World Health Organization, Guidelines for drinking-water quality, 3rd, Recommendations, Vol. 1, WHO, Geneva, 2004. http://www.who.int/water_sanitation_health/dwq/GDWQ2004web.pdf.
  • [26] The Minister of Environment Regulation dated February 11th 2004 for the classification of surface water and groundwater quality, methods of conducting of monitoring, the interpretation of the results and the presentation of these water quality. (Journal of Laws of 2004, No. 32, item 284). http://isip.sejm.gov.pl/DetailsServlet?id=WDU20040320284.
  • [27] Mariscal A, Garcia A, Carnero M, Gómez J, Pinedo A, Fernández-Crehuet J. Evaluation of the toxicity of several heavy metals by a fluorescent bacterial bioassay. J Appl Toxicol. 1995;15(2):103-107. DOI: 10.1002/jat.2550150208.
  • [28] Spain A. Implications of microbial heavy metal resistance in the environment. Rev Undergraduate Res. 2003;2:1-6. https://www.researchgate.net/publication/235641003_Implications_of_bacterial_ resistance_against_heavy_metals_in_bioremediation_A_review.
  • [29] Nies DH. Microbial heavy metal resistance. Appl Microbiol Biotechnol. 1999;51:730-750. http://link.springer.com/article/10.1007/s002530051457
  • [30] Hassen A, Saidi N, Cherif M, Boudabous A. Resistance of environmental bacteria to heavy metals. Bioresour Technol. 1998;64:7-15. DOI:10.1016/S0960-8524(97)00161-2
  • [31] Filali BK, Taoufik J, Zeroual Y, Dzairi FZ, Talbi M, Blaghen M. Wastewater bacterial isolates resistant to heavy metals and antibiotics. Curr Microbiol. 2000;41:151-156. DOI: 10.1007/s0028400.
  • [32] Hussein H, Farag S, Kandil K, Moawad H. Tolerance and uptake of heavy metals by Pseudomonads. Process Biochem. 2005;40:955-961. DOI:10.1016/j.procbio.2004.04.001.
  • [33] Ehrlich HL. Microbes and metals. Appl Microbiol Biotechnol. 1997;48:687-692. DOI:10.1007/s002530051116.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1e1920ce-b064-4cdd-ad75-fa82755d5108
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.