PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Conductivity and Flexibility Enhancement of Aerosol-Jet-Printed Sensors Using a Silver Nanoparticle Ink with Carbon Nanotubes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Efforts to miniaturize and customize electronic devices have attracted considerable amounts of attention in many industrial fields. Recently, due to its innovative printing technology with the capability of printing fine features onto non-planar substrates without masks, aerosol jet printing (AJP) is emerging as a promising printed-electronics technology capable of meeting the requirements of various advanced electronic applications. In this research, a novel manufacturing process based on AJP is proposed in order to fabricate highly flexible and conductive customized temperature sensors. To improve the flexibility and conductivity of the printed tracks, a silver nanoparticle/carbon nanotubes composite ink is developed. Customized temperature sensors are then designed and fabricated based on the optimized process parameters of AJP. It was found that the CNTs served as bridges to connect silver nanoparticles and defects, which could be expected to reduce the contact resistivity and enhance the flexibility of the printed sensor.
Twórcy
  • School of Mechanical and Electronic Engineering, Suzhou University, Suzhou 234000, China
  • School of Mechanical and Aerospace, Nanyang Technological University, Singapore 639798, Singapore
autor
  • Department of 3D Printing, Korea Institute of Machinery & Materials, Daejeon 34103, Republic of Korea
autor
  • Department of 3D Printing, Korea Institute of Machinery & Materials, Daejeon 34103, Republic of Korea
autor
  • Department of 3D Printing, Korea Institute of Machinery & Materials, Daejeon 34103, Republic of Korea
  • Department of 3D Printing, Korea Institute of Machinery & Materials, Daejeon 34103, Republic of Korea
Bibliografia
  • [1] J. Chang, X. Zhang, T. Ge, J. Zhou, Org. Electron. 15, 701 (2014).
  • [2] G. Cadilha Marques, S.K. Garlapati, S. Dehm, S. Dasgupta, H. Hahn, M. Tahoori, Appl. Phys. Lett. 111, 102103 (2017).
  • [3] H.S. Kim, J.S. Kang, J.S. Park, H.T. Hahn, H.C. Jung, J.W Joung, Compos. Sci. Technol. 69, 1256 (2009).
  • [4] S. Park, M. Vosguerichian, Z. Bao, Nanoscale 5, 1727 (2013).
  • [5] J. Zikulnig, C. Hirschl, L. Rauter, M. Krivec, H. Lammer, F. Riemelmoser, A. Roshanghias, Flex. Print. Electron. 4, 015008 (2019).
  • [6] S.N. Kwon, S.W. Kim, I.G. Kim, Y.K. Hong, S.I. Na, Adv. Mater. Technol. 4, 1800500 (2019).
  • [7] R. Liu, H. Ding, J. Lin, F. Shen, Z. Cui, T. Zhang, Nanotechnology 23, 505301 (2012).
  • [8] M. Ha, J.W.T. Seo, P.L. Prabhumirashi, W. Zhang, M.L. Geier, M.J. Renn, C.H. Kim, M.C. Hersam, C.D. Frisbie, Nano Lett. 13, 954 (2013).
  • [9] A.A. Gupta, A. Bolduc, S.G. Cloutier, R. Izquierdo, 2016 IEEE International Symposium on Circuits and Systems (ISCAS), 866 (2016).
  • [10] S. Vella, C.S. Smithson, K. Halfyard, E. Shen, M. Chrétien, Flex. Print. Electron. 4, 045005 (2019).
  • [11] S.K. Eshkalak, A. Chinnappan, W. Jayathilaka, W.A.D.M. Jayathilaka, M. Khatibzadeh, E. Kowsari, S. Ramakrishna, Appl. Mater. Today. 9, 372 (2017).
  • [12] D. Zhao, T. Liu, J.G. Park, M. Zhang, J.M. Chen, B. Wang, Microelectron. Eng. 96, 71 (2012).
  • [13] A. Kamyshny, S. Magdassi, Chem. Soc. Rev. 48, 1712 (2019).
  • [14] W.J. Hyun, S. Lim, B.Y. Ahn, J.A. Lewis, C.D. Frisbie, L.F. Francis, ACS Appl. Mater. Interfaces 7, 12619 (2015).
  • [15] K.S. Siow, J. Alloys Compd. 514, 6 (2012).
  • [16] B.Q. Wei, R. Vajtai, P.M. Ajayan, Appl. Phys. Lett. 79, 1172 (2001).
  • [17] E. Brown, L. Hao, J.C. Gallop, J.C. Macfarlane, Appl. Phys. Lett. 87, 023107 (2005).
  • [18] G.L. Goh, S. Agarwala, W.Y. Yeong, Adv. Mater. Interfaces 6, 1801318 (2019).
  • [19] S. Yao, Y. Zhu, Adv Mater. 27, 1480 (2015).
  • [20] H. Zhang, S.K. Moon, ACS Appl. Mater. Interfaces 13, 53323 (2021).
  • [21] M. Smith, Y.S. Choi, C. Boughey, S. Kar-Narayan, Flex. Print. Electron. 2, 015004 (2017).
  • [22] H. Zhang, S.K. Moon, Int. J. of Precis. Eng. and Manuf-Green. Tech. 7, 511 (2020).
  • [23] H. Zhang, J.P. Choi, S.K. Moon, T.H. Ngo, J. Mater. Process. Technol. 285, 116779 (2020).
  • [24] R.R. Salary, J.P. Lombardi, M. Samie Tootooni, R. Donovan, P.K. Rao, P. Borgesen, M.D. Poliks, J. Manuf. Sci. Eng. 139, 021015 (2017).
  • [25] H. Zhang, J.P. Choi, S.K. Moon, T.H. Ngo, Addit. Manuf. 33, 101096 (2020).
  • [26] Y. Oh, D. Suh, Y. Kim, E. Lee, J.S. Mok, J. Choi, S. Baik, Nanotechnology 19, 495602 (2008).
  • [27] V. Vitale, A. Curioni, W. Andreoni, J. Am. Chem. Soc. 130, 5848 (2008).
  • [28] D.R. Kauffman, A. Star, Nano Lett. 7, 1863 (2007).
  • [29] V. Gopee, O. Thomas, C. Hunt, V. Stolojan, J. Allam, S.R.P. Silva, ACS Appl. Mater. Interfaces 8, 5563 (2016).
  • [30] D. Zhao, T. Liu, M. Zhang, R. Liang, B. Wang, J. Allam, S.R.P. Silva, Smart Mater. Struct. 21, 115008 (2012).
Uwagi
This research was supported by the Basic Research Program funded by the Korea Institute of Machinery & Materials (KIMM) (No. NK248I). This research was also supported by the Key Natural Science Project of Anhui Provincial Education Department (No. 2022AH051372) and Suzhou University (No. 2021XJPT51, No. 2021BSK023, No. 2019xjzdxk1).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1e16f196-83a9-4b93-9396-ce661e2015d5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.