PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Generation of three-port splitter by double-layer grating in second-order Littrow configuration

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a novel double-layer three-port grating is described. The incident grating structure is in the second-order Littrow configuration. The grating region is composed of fused silica and Ta2O5.The designed grating beam splitter has high efficiency under TE polarization and TM polarization, respectively. The efficiency of two polarizations is more than 90%. In addition, compared with a single-layer three-port grating, this new beam splitter has good fabrication tolerance and incident bandwidth. Therefore, the optimized structure has a good application value.
Czasopismo
Rocznik
Strony
271--280
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
  • School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
autor
  • School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
autor
  • School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
autor
  • School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
autor
  • School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
autor
  • School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
autor
  • School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
autor
  • School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
autor
  • School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
autor
  • School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
Bibliografia
  • [1] ZHIBIN REN, YAHUI SUN, ZIHAO LIN, CHUNYU WANG, WANYING HUANG, Tunable nonpolarizing guided-mode resonance filter incorporating electrically driving liquid crystal, Infrared Physics and Technology 95, 2018, pp. 39–45, DOI:10.1016/j.infrared.2018.10.016.
  • [2] JIE WANG, HONGDAN WAN, HAN CAO, YU CAI, BING SUN, ZUXING ZHANG, LIN ZHANG, A 1-μm cylindrical vector beam fiber ring laser based on a mode selective coupler, IEEE Photonics Technology Letters 30(9), 2018, pp. 765–768, DOI:10.1109/LPT.2018.2797990.
  • [3] DEHDAST M., BAHRAMI A., MOHAMMADNEJAD S., A novel trapezoidal profile of optimized diffraction grating for light trapping in thin silicon solar cells, Optica Applicata 47(1), 2017, pp. 75–83, DOI:10.5277/oa170107.
  • [4] ASGARI N., HAMIDI S.M., Fantastic exciton-plasmon coupling in dye-doped poly (vinyl pyrrolidone)/gold one-dimensional nano-grating, Superlattices and Microstructures 123, 2018, pp. 358–373, DOI:10.1016/j.spmi.2018.09.019.
  • [5] YAO ZHU, CONGYING FENG, YUZE WU, YONGLIN YU, A chirp-managed tunable DBR laser based on novel cascaded gratings, IEEE Photonics Journal 10(5), 2018, article 7203810, DOI:10.1109/JPHOT.2018.2871513.
  • [6] YOUSEFI P., SCHONENBERGER N., MCNEUR J., KOZAK M., NIEDERMAYER U., HOMMELHOFF P., Dielectric laser electron acceleration in a dual pillar grating with a distributed Bragg reflector, Optics Letters 44(6), 2019, pp. 1520–1523, DOI:10.1364/OL.44.001520.
  • [7] BANGHONG ZHANG, YANDONG GONG, Achromatic terahertz quarter waveplate based on silicon grating, Optics Express 23(11), 2015, pp. 14897–14902, DOI:10.1364/OE.23.014897.
  • [8] WENJING FANG, XINYE FAN, XIA ZHANG, HUIJUAN NIU, HENGYING XU, JIARUI FEI, YONGQING HUANG, CHENGLIN BAI, Polarization-insensitive high-index contrast gratings beam splitter with focusing ability, IEEE Photonics Technology Letters 30(8), 2018, pp. 708–711, DOI:10.1109/LPT.2018.2812866.
  • [9] JUN GU, FEI WANG, YOUXI LU, MENGMENG PENG, LUN SHI, WEN KANG, JINGXIN HUANG, Polarization dependence of stimulated Brillouin scattering-based switchable microwave photonic filter, OpticaApplicata 49(1), 2019, pp. 5–11, DOI:10.5277/oa190101.
  • [10] VOZNYUK L., BOUTAMI S., GLIERE A., Enlarging the bandwidth of a two-dimensional photonic crystal mirror in the visible range, Optica Applicata 47(2), 2017, pp. 175–182, DOI:10.5277/oa170201.
  • [11] MAN JIANG, PU ZHOU, XIJIA GU, Ultralong π-phase shift fiber Bragg grating empowered single-lon-gitudinal mode DFB phosphate fiber laser with low-threshold and high-efficiency, Scientific Reports 8, 2018, article 13131, DOI:10.1038/s41598-018-31528-w.
  • [12] WEIMIN WANG, XUFENG JING, JINGYIN ZHAO, YINYAN LI, YING TIAN, Improvement of accuracy of simple methods for design and analysis of a blazed phase grating microstructure, Optica Applicata 47(2), 2017, pp. 183–198, DOI:10.5277/oa170202.
  • [13] YINGXUAN ZHAO, CHAO QIU, AIMIN WU, HAIYANG HUANG, JUN LI, ZHEN SHENG, WEI LI, XI WANG, FUWAN GAN, Broadband polarization splitter-rotator and the application in WDM receiver, IEEE Photonics Journal 11(1), 2019, article 6600310, DOI:10.1109/JPHOT.2018.2886268.
  • [14] JINBIAO XIAO, ZHENZHAO GUO, Ultracompact polarization-insensitive power splitter using subwave-length gratings, IEEE Photonics Technology Letters 30(6), 2018, pp. 529–532, DOI:10.1109/LPT.2018.2801337.
  • [15] YIFAN TANG, YIFAN ZHU, BIN LIANG, JING YANG, JUN YANG, JIANCHUN CHENG, One-way acoustic beam splitter, Scientific Reports 8, 2018, article 13573, DOI:10.1038/s41598-018-29579-0.
  • [16] XUAN ZHAO, YIHANG LI, SHUAI FENG, XIAO CHEN, CHUANBO LI, YIQUAN WANG, Beam splitting characteristics of two-dimensional photonic crystals based on surface modulation, Optics Communications 439, 2019, pp. 193–200, DOI:10.1016/j.optcom.2019.01.021.
  • [17] JIANGJUN ZHENG, CHANGHE ZHOU, BO WANG, JIJUN FENG, Beam splitting of low-contrast binary gratings under second Bragg angle incidence, Journal of the Optical Society of America A 25(5), 2008, pp. 1075–1083, DOI:10.1364/JOSAA.25.001075.
  • [18] HAO HUANG, TINGTING ZHAI, QIANG SONG, XIAODONG YIN, Wide angle 2D beam splitter design based on vector diffraction theory, Optics Communications 434, 2019, pp. 28–35, DOI:10.1016/j.optcom.2018.10.026.
  • [19] MOHARAM M.G., POMMET D.A., GRANN E.B., GAYLORD T.K., Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach, Journalof the Optical Society of America A 12(5), 1995, pp. 1077–1086, DOI:10.1364/JOSAA.12.001077.
  • [20] BOTTEN I.C., CRAIG M.S., MCPHEDRAN R.C., ADAMS J.L., ANDREWARTHA J.R., The dielectric lamellar diffraction grating, Optica Acta 28(3), 1981, pp. 413–428, DOI:10.1080/713820571.
  • [21] AHMED F., AHSANI V., JO S., BRADLEY C., TOYSERKANI E., JUN MARTIN B.G., Measurement of in-fiber refractive index change using a Mach–Zehnder interferometer, IEEE Photonics Technology Letters 31(1), 2019, pp. 74–77, DOI:10.1109/LPT.2018.2883913.
  • [22] XIAO WANG, BIN LU, ZHAOYONG WANG, HANRONG ZHENG, JIAJING LIANG, LUCHUAN LI, QING YE, RONGHUI QU, HAIWEN CAI, Interference-fading- free Φ-OTDR based on differential phase shift pulsing technology, IEEE Photonics Technology Letters 31(1), 2019, pp. 39–42, DOI:10.1109/LPT.2018.2881757.
  • [23] XUFENG JING, RUI XIA, XINCUI GUI, WEIMIN WANG, YING TIAN, DONGSHUO ZHU, GUOHUA SHI, Design of ultrahigh refractive index metamaterials in the terahertz regime, Superlattices and Microstructures 109, 2017, pp. 716–724, DOI:10.1016/j.spmi.2017.05.061.
  • [24] HONGTAO LI, BO WANG, HAO PEI, LI CHEN, LIANG LEI, JINYUN ZHOU, Fused-silica sandwiched three-port grating under second Bragg angle incidence, Superlattices and Microstructures 93, 2016, pp. 157–162, DOI:10.1016/j.spmi.2016.03.027.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1e1416d6-c27b-45ad-b0c8-edc5b5446c06
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.