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Generation of three-port splitter
by double-layer grating
in second-order Littrow configuration
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In this paper, a novel double-layer three-port grating is described. The incident grating structure is
in the second-order Littrow configuration. The grating region is composed of fused silica and Ta,Os.
The designed grating beam splitter has high efficiency under TE polarization and TM polarization,
respectively. The efficiency of two polarizations is more than 90%. In addition, compared with
a single-layer three-port grating, this new beam splitter has good fabrication tolerance and incident
bandwidth. Therefore, the optimized structure has a good application value.
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1. Introduction

Grating is a common optical device, which can perform different functions depending
on the fabricated material and structure, such as polarization, splitting, filtering, etc. [1-5].
The grating can be designed as an anti-reflector [6], a phase retardation waveplate [7],
a polarization beam splitter [8], and a wavelength selective reflection filter [9] according
to different functions. For example, fused-silica grating [10, 11] has good thermal sta-
bility and high damage threshold. And the polarizing beam splitter [12—-16] etched in
fused silica has good diffraction efficiency and high utilization. Moreover, it has im-
portant applications in the fields of lithography, laser pulses, spectroscopic, and inter-
ferometers. ZHENG et al. [17] generally proposed a single-layer three-port grating under
TE polarization. The diffraction efficiencies in the —2nd order, —1st order and Oth order
were 28.84%, 28.85%, and 28.85%, respectively [17]. The overall efficiency is 86.54%.
The incident light is under the second Bragg grating structure mode. Different from
the single-layer grating, the grating thickness of the two layers affects the beam split-
ting effect of the grating. We propose a two-layer three-port fused-silica grating, which
is much more efficient than reported in Ref. [17]. The total efficiency of our design has
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increased to 11.4% compared with Ref. [17] under TE polarization. Moreover, TM po-
larization is also considered in this design. While in Ref. [17], only TE polarization is
optimized for the three-port splitting. For practical production, the influence of tech-
nological tolerance on grating is investigated in this design.

Based on the theoretical analysis of gratings, we mainly use the vector diffraction the-
ory [18]. In this design, we mainly use the rigorous coupled-wave analysis (RCWA) [19].
This method has been improved continuously and can deal with grating of different
plane and medium. Different from the model method [20], the strictly coupled wave
is expanded according to different diffraction orders, and then the diffraction field is
obtained by the boundary conditions. RCWA is a direct and effective electromagnetic
field theory. It solves the problem of solving Maxwell’s equation strictly in the grating
region. The electromagnetic field expression of the grating region coupled by the eigen-
function is obtained. The value of the final diffraction efficiency is obtained by solving
the boundary conditions at the interface. The diffraction phenomenon of grating cannot
be explained by a strictly coupled wave. The mode method can be used to describe the
working mechanism of grating more simply and intuitively.

In this paper, a novel three-port beam splitter based on double-layer fused-silica
grating is designed. We get better numerical results by rigorous coupled-wave optimi-
zation. For TE polarization, the diffraction efficiency of the three diffraction orders
was 97.94% overall. For TM polarization, the diffraction efficiency of the three dif-
fraction orders is 98.08%. We analyze the manufacturing tolerance and incident char-
acteristics of the grating. The grating beam splitter has a large period tolerance and
good angular bandwidth for TE polarization. High-efficiency beam splitter is well suit-
ed for use in the laser field.

2. Optimization and modal analysis of beam splitter

The designed beam splitter is shown in Fig. 1. For this double-layer grating structure,
the original grating period can be reduced compared with the conventional single-layer
three-port transmission grating. For ease of design and production, the duty cycle f'is
set to 0.5 and the period d is designed to be 953 nm by calculation. The incident wave-
length is 800 nm. The angle of incidence is = sin"!(1/d). The incident light is incident
under the second Bragg Littrow mounting. The grating substrate is made of fused-silica
medium. The first layer is made of Ta,Os with a depth of /| and a refractive index of
ny =2.00. The second layer is made of the same material as the substrate with a depth
of h,, and the refractive index is n, = 1.45. TE polarization is the incident light whose
electric field is parallel to the direction of the grating groove. TM polarization is that
the direction of the electric field is perpendicular to the grating groove. The three-port
splitter can be designed for TE or TM polarization by double-layer grating in the sec-
ond-order Littrow configuration. After the incident light is split by the grating, most of
the energy can only be split to the Oth, —1st and —2nd order. The grating parameters and
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Fig. 1. The schematic diagram of the double-layer three-port rectangular grating under second Bragg in-
cidence.

incident conditions are the factors that affect the performance of the grating. The grat-
ing parameters and incident conditions are factors that affect the performance of the
grating, including incident angle, duty cycle, period, and groove depths. The incident
angle is under the second Bragg Littrow mounting. In this design, in order to concen-
trate the energy on the specific diffraction order of the grating, we first design the cor-
responding grating period and duty cycle. Then, the accurate depths of two layers can
be optimized by RCWA.

For the optimization, Fig. 2 shows the relationship between the depth of two layers
and efficiency of the grating under two polarizations. The known duty cycle is 0.5 and
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Fig. 2. Efficiencies in three orders for the grating versus depth of two layers at wavelength of 800 nm with
duty cycle of 0.5 under second Bragg incidence: the Oth order for TE polarization (a), the —1st order for
TE polarization (b), the —2nd order for TE polarization (¢), the Oth order for TM polarization (d), the
—1st order for TM polarization (e), and the —2nd order for TM polarization (f).
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Fig. 2. Continued.

the period is 953 nm. After the optimization of the rigorous coupled wave, the following
higher parameters are obtained. For TE polarization, the optimized parameters of the
grating are 4, = 0.07 um and /4, = 0.69 pum. At this time, the efficiency of the Oth order
is 32.98%, the efficiency of the —1st order is 32.53%, and the efficiency of the —2nd order
is 32.42%. The ratio of the —1st to the Oth order efficiency for TE polarization is 0.9863,
and the ratio of the —2nd to the —1st order for TE polarization is 0.9966. For TM po-
larization, the optimized parameters of the grating are 4, = 0.4 um and /4, = 0.55 pm.
At this time, the efficiency of the Oth order is 32.69%, the efficiency of the —1st order
is 32.79%, and the efficiency of the —2nd order is 32.60%. The ratio of the —1st to the
Oth order efficiency is 1.003, and the ratio of the —2nd to —1st order is 0.9942.

Based on the modal method, Fig. 3 reflects the relationship between the effective
refractive index and the period when the incident wavelength of the grating is 800 nm,
duty cycle is 0.5 under the second Bragg angle incidence. The effective refractive index
of the grating is related to the period of the grating and the refractive index of each
layer of the grating. The mode coupling and diffraction efficiency of the grating are
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Fig. 3. Effective index versus the grating period with duty cycle of 0.5 and wavelength of 800 nm under
second Bragg incidence: TE polarization (a), and TM polarization (b).

Table. The effective refractive index of double-layer grating.

The first layer The second layer
Polarization TE ™ TE ™
Mode 0 1.8957 1.8446 1.3470 1.3023
Mode 1 1.5589 1.3427 0.9746 0.8714
Mode 2 1.0313 1.0103 0.7851 0.8526

related to the effective refractive index of the double-layer medium. The effective re-
fractive index is determined by solving the dispersion equations [21-23] for TE po-
larization

F(nky) = cos(k,(1- f)d)cos(k, fd) - %g—sm(kl(l —f)d)sin(k, fd)
= cos(ad) v
and for TM polarization
n4k2+ 2
F(nky) = cos(k,(1- f)d)cos(k, fd) - ‘2,}217{;2‘““(““ ~f)d)sin(k, fd)

cos(ad)

where k, = ko2 —nZs , a=kosind, and ko= 2m/A.
The effective refractive index of grating can be calculated by the mode method,

which is shown in the Table. Therefore, the propagating constants of two layers for
TE-polarized light are:
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For TM-polarized light, the propagating constants can be calculated and shown that:
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o™ = 21T~ 7.9308 x 100 m
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The modal method can be used to explain the diffraction behavior of light waves
in the grating. When light is incident from the upper surface of the grating to the lower
surface, two couplings occur. The first coupling is that the light enters the grating,
where three grating modes are excited: mode 0, mode 1 and mode 2. Three modes have
different effective refractive indices and propagate with different propagation con-
stants. The energy exchange exists between the incident wave and the grating mode [24].
The second coupling occurs between the grating mode and the diffraction order. Through
energy exchange for two layers, the physical explanation can be illustrated for the im-
proved three-port splitting grating.
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3. Manufacturing tolerance and investigation
of incident performance

Considering practical manufacture, Fig. 4 shows the relationship between period toler-
ance and efficiency under the second Bragg angle. Compared to the other three-port beam
splitter, the grating has a high period fabrication tolerance. This is the performance that
needs to be considered in actual production. As shown in Fig. 4a, the efficiency of the
grating is greater than 30% in the range of 922—1016 nm for TE polarization. As shown
in Fig. 4b, the efficiency is greater than 30% in the range of 940-964 nm for TM po-
larization. The data shows that the grating period tolerance under TE polarization is
high. The incident wavelength bandwidth and angular bandwidth are also parameters
for studying the grating beam splitting structure. In the optimization process, the in-
cident wave is always under the second Bragg incident angle.
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Fig. 4. The efficiency corresponding to the period for TE polarization (a), and TM polarization (b).
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Fig. 6. The diffraction efficiency corresponding to the incident second Bragg angle: TE polarization (a),
and TM polarization (b).

Figure 5 reflects the relationship between the efficiency of the grating stages and
the incident wavelength. As shown in Fig. 5, for TE polarization, the wavelength band-
width of greater than 30% is in the range of 784—824 nm and the bandwidth is 40 nm.
For TM polarization, the wavelength bandwidth of greater than 30% is 791-809 nm
and the bandwidth is 18 nm. Figure 6 reflects the relationship between the incident
angle and the efficiency of three diffraction orders. Under TE polarization, the angular
efficiency of the grating efficiency is greater than 30% and the angular bandwidth is
47.3-65.9 deg. The bandwidth is 18.6 deg. Under TM polarization, the grating effi-
ciency is greater than 30% for the angular bandwidth range from 54.9 to 62.6 deg with
a bandwidth of 7.7 deg.

4. Conclusions

In order to improve the efficiency and incident characteristics of three-channel grat-
ings, the grating structure is optimized by rigorous coupled-waves. A SiO,/Ta,O5 dou-
ble-layer rectangular grating with second Bragg incidence is proposed in this paper.
The transmittance of TE-polarized light can reach 97.93%, while that of TM-polarized
light can reach 98.08%. Compared with single-layer three-port grating, the design also
has a higher bandwidth of incident wavelength and a wide range of incident angles.
The double-layer thickness and period of the grating are relatively small, which is ben-
eficial to the fabrication and application of the grating.
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