PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Habitat Preferences of Plant Communities: New Approach Based on the GGE Biplot Analysis

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we introduce a new way of analysing habitat preferences of plant communities using the genotype and genotype-by-environment interaction effects (GGE) biplot method. We took into consideration real data on six plant associations belonging to the Molinio-Arrhenatheretea class. A total of 241 phytosociological relevès collected with the Braun-Blanquet method were described by the Ellenberg indicators. The two-way classification relevès-by-indicators was analysed with GGE. As a result it is proposed the modified biplot that contains ellipses for making the plot clearer. Next, we present the equations that described both axes and allow adding into the biplot any other relevès or a mean of set of relevès. Based on the generated biplot it is possible to present an ecological characteristics of any type of plant community including its acceptable and typical habitat requirements. The ellipse ranges provide important information about the homogeneity and ecological spectrum of the analysed syntaxon. The constructed equations allow comparing new data with data analysed previously. Summing up, the GGE biplot method is useful for analysing and graphically presenting ecological preferences of plant communities in a simple and comprehensive way.
Rocznik
Strony
387--399
Opis fizyczny
Bibliogr. 43 poz., rys.
Twórcy
  • Department of Agronomy
  • Department of Experimental Design and Bioinformatics, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
Bibliografia
  • 1. Albrecht H. 2003 — Suitability of arable weeds as indicator organisms to evaluate species conservation effects of management in agricultural ecosystems — Agr. Ecosyst. Environ. 98: 201–211.
  • 2. Botta-Dukát Z., Chytrý M., Hájková P., Havlová M. 2005 — Vegetation of lowland wet meadows along a climatic continentality gradient in Central Europe — Preslia, Praha, 77: 89–111.
  • 3. Braun-Blanquet J. 1964 — Pflanzensoziologie. Grundzüge der Vegetationskunde — Springer-Verlag, Wien—New York.
  • 4. De Leeuw J., Mair P. 2009 — Simple and Canonical Correspondence Analysis Using the R Package anacor — J. Stat. Softw. 31, issue 05.
  • 5. Dzwonko Z. 2001 — Assessment of light and soil conditions in ancient and recent woodlands by Ellenberg indicator values — J. Appl. Ecol. 38,942–951.
  • 6. Ellenberg H., Strutt G.K. 2009 — Vegetation ecology of Central Europe —Cambridge University Press, 756 pp.
  • 7. Ellenberg H., Weber H.E., Düll R., Wirth V., Werner W., Paulißen D. 1992— Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobot. 18: 1–258.
  • 8. Fijałkowski D., Chojnacka-Fijałkowska E. 1990 — Zbiorowiska z klasPhragmitetea, Molinio-Arrhenatheretea i Scheuchzerio-Caricetea fuscae w makroregionie lubelskim [Phytosociological associations belonging to classes Phragmitetea,Molinio-Arrhenatheretea i Scheuchzerio-Cariceteafuscae in the Lublin macroregion] Rocz. Nauk Rol. 217, 414 pp. (in Polish).
  • 9. Gabriel K.R. 1971 — The biplot graphic display of matrices with application to principal component analysis — Biometrica, 58: 453–467.
  • 10. Gauch H.G. 1992 — Statistical analysis of regional yield trials. AMMI analysis of factorial designs — Elsevier Science, New York, 278 pp.
  • 11. Glaser P.H., Janssens J.A., Siegiel D.I. 1990 — The response of vegetation to chemical and hydrological gradients in the lost river peatland, Northern Minnesota — J. Ecol. 78:1021–1048.
  • 12. Hill M.O., Roy D.B., Mountford J.O., Bunce R.G.H. 2000 — Extending Ellenberg's indicator values to a new area: an algorithmic approach —J. Appl. Ecol. 37: 3–15.
  • 13. Kapfer J., Grytnes J.A. Gunnarsson U., Birks H.J.B. 2011 — Fine-scale changes in vegetation composition in a boreal mire over 50 years — J. Ecol. 99: 1179–1189.
  • 14. Knollová I., Chytrý M., Tichý L., Hájek O. 2006 — Local ranges of phytosociological associations: are they reflected in numerical classification? —Biologia. Bratislava, 61: 71–77.
  • 15. Kryszak A., Grynia M. 2001 — Floristic diversity and economic value of theAlopecuretum pratensis association in Western Poland — Grassland Sci. Eur. 6: 164–166.
  • 16. Kryszak A., Klarzyńska A., Kryszak J., Strychalska A., Maćkowiak Ł. 2012— Influence of variability of ryegrass meadow soil conditions on their natural and utilization values — Not. Bot. Horti. Agrobo. 40:163 – 69. Available online et www.notulaebotanicae.ro.
  • 17. Kryszak A., Kryszak J. 2001 — Effects of utilisation of Lolio-Cynosuretumpastures on plants species diversity and yield — Grassland Sci. Eur. 6:167–169.
  • 18. Kryszak A., Strychalska A., Kryszak J., Klarzyńska A. 2010 — The impact of Deschamspia caespitosa (L.) p. Beauv (tufted hairgrass) on the floristic composition of meadow communities — Grassland Sci. Eur. 15:705–707.
  • 19. Legendre P., Legendre L.F.J. 1998 — Numerical Ecology — Elsevier Science, Amsterdam, 852 pp.
  • 20. Lengyel A., Chytrý M., Tichý L. 2011 — Heterogeneity — constrained random resampling of phytosociological databases — J. Veg. Sci. 22:175–183.
  • 21. Mardia K.V., Kent J.T., Bibby J.M. 1979 — Multivariate Analysis —London: Academic Press, 521 pp.
  • 22. Matuszkiewicz W. 2008 — Przewodnik do oznaczania zbiorowisk roślinnych Polski (The guide for identification of Polish plant communities)— Wyd. Nauk. PWN (in Polish) 536 pp.
  • 23. Michalet R., Rolland Ch., Joud D., Gafta D., Callaway R.M. 2002 —Associations between canopy and understory species increase along a rainshadow gradient in the Alps: habitat heterogeneity or facilitation? —Plant Ecol. 165: 145–160.
  • 24. Mirek Z., Piçkoś-Mirkowa H., Zając A., Zając M. 2002 — Flowering plants and pteridophytes of Poland. A checklist — Biodiversity of Poland —1, W. Szafer Institute of Botany, Polish Academy of Sciences, Krakov, 340 pp.
  • 25. Myśliwy M., Bosiacka B. 2009 — Disappearance of Molinio-Arrhenatheretea meadows diagnostic species in the Upper Płonia River Valley (NW Poland) — Pol. J. Environ. Stud. 18, 3: 513–519.
  • 26. Nenadić O., Greenacre M. 2007 — Computation of Multiple Correspondence Analysis, with Code in R, in Multiple Correspondence Analysis and Related Methods (eds. M. Greenacre and J. Blasius) — Boca Raton: Chapmann, Hall / CRC, pp. 523–551.
  • 27. Nowiński M. 1967 — Polskie zbiorowiska trawiaste i turzycowe [Polish communities of sedges and grasses] — PWRiL, Warsaw, 284 pp. (in Polish).
  • 28. Poor M.E.D. 1955 — The use of phytosociological methods in ecological investigations: I. The Braun-Blanquet System — J. Ecol. 43, 1, 226–244.
  • 29. R Development Core Team. 2008 — R: A language and environment for statistical computing — R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R - project.org.
  • 30. Rodwell, J. S. 1998 — British plant communities: grasslands and montane communities — Cambridge University Press, 540 pp.
  • 31. Rogel J.A., Ariza F.A., Silla R.O. 2000 — Soil salinity and moisture gradients and plant zonation in Mediterranean salt marshes of Southeast Spain — Wetlands 20, 2: 357–372.
  • 32. Schaffers A.P., Sýkora K.V. 2000 — Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements — J. Veg. Sci. 11: 225–244.
  • 33. Škodová I., Janišová M. 2008 — The classification of Slovak grassland communities to the higher syntaxonomical units — Annali di Botanica (Roma), 8:31–42.
  • 34. Stančić Z. 2008 — Classification of mesic and wet grasslands in northwest Croatia — Biologia, Section Botany, 63: 1089–1103.
  • 35. Szymura T.H., Szymura M., Macioł A. 2014 — Bioindication with Ellenberg's indicator values: A comparison with measured parameters in Central European oak forests — Ecol. Indic. 46: 495–503.
  • 36. Ter Braak C.J.F. 1986 — Canonical Correspondence Analysis: A new eigenvector technique for multivariate direct gradient analysis — Ecology, 67: 1167–1179.
  • 37. Ter Braak C.J.F. 1987 — The analysis of vegetation-environment relationships by canonical correspondence analysis — Vegetatio, 69:69–77.
  • 38. Trqba Cz., Wolański P., Oklejewicz K. 2008 — Floristic diversity and sward use value of Lolio-Cynosuretum association in the San River Valley — Ann. Univ. Maria Curie-Sklodowska, Lublin-Polonia, Agrie. E. 63: 67–73.
  • 39. Trąba Cz., Wolański P., Woźniak L. 2003 — The differentiation of meadows of the Arrhenatheretumelatioris association in the river valleys of Zamośćbasin — Grassland Sci. Eur. 8: 610–612.
  • 40. Wagner M., Kahmen A., Schlumprecht H., Audorff V., Perner J., Buchmann N., Weisser W.W. 2007 — Prediction of herbage yield in grassland: How well do Ellenebrg N - values perform? — Appl. Veg. Sci.10: 15–24.
  • 41. Wójcik Z. 1983 — Characteristics and assessment of fields by bioindical methods — Wydawnictwo SGGW-AR, Warsaw.
  • 42. Yan W., Kang M.S. 2003 — GGE Biplot Analysis: A Graphical Tool for Breeders, Geneticists, and Agronomists — CRC Press. Boca Raton, FL,288 pp.
  • 43. Zarzycki K. Trzcińska-Tacik H., Różański W., Szeląg Z., Wołek J., Korzeniak U. 2002 — Ekologiczne liczby wskaźnikowe roślin naezyniowych Polski [Ecological indicator values of vascular plants of Poland] Biodiversity of Poland, 2 — W. Szafer Institute of Botany, Polish Academy of Sciences, Krakow, 183 pp. (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1e112448-7274-4cbb-9d40-2881e9a8f425
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.