PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of generalized boundary conditions for homogenization of thermal and filtration properties of soils

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
19th KKMGiIG
Języki publikacji
EN
Abstrakty
EN
In the paper, generalized boundary conditions were used for the homogenization of coefficients of the Laplace partial differential equation in the context of Darcy flow and heat diffusion phenomena. The mesoscopic boundary value problem was defined and analyzed from the variational perspective and the finite element formulation of the homogenization problem was provided. The matrix equation for the apparent macroscopic properties, resulting from FEM discretization, was derived and utilized in two illustrative examples: homogenization of the filtration coefficient of clay amended with expanded shale and thermal conductivity of the soil with multiple fractions. It is shown, that generalized boundary conditions can provide very good homogenization results without the assumption of the periodicity of the material. For best results, the microscopic length parameter has to be properly estimated.
Wydawca
Rocznik
Strony
362--369
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
  • Lodz University of Technology, Łódź, Poland
Bibliografia
  • [1] Davis, T. A. (2004, June). Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal method. ACM Transactions on Mathematical Software, 30 (2), 196–199. doi: 10.1145/992200.992206
  • [2] Geuzaine, C., & Remacle, J.-F. (2009). Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering, 79 (11), 1309–1331. doi: 10.1002/nme.2579
  • [3] Gitman, I. M., Askes, H., & Sluys, L. J. (2007, November). Representative volume: Existence and size determination. Engineering Fracture Mechanics, 74 (16), 2518–2534. doi: 10.1016/j.engfracmech.2006.12.021
  • [4] Hazanov, S., & Amieur, M. (1995, July). On overall properties of elastic heterogeneous bodies smaller than the representative volume. International Journal of Engineering Science, 33 (9), 1289–1301. doi: 10.1016/0020-7225(94)00129-8
  • [5] Hazanov, S., & Huet, C. (1994, December). Order relationships for boundary conditions effect in heterogeneous bodies smaller than the representative volume. Journal of the Mechanics and Physics of Solids, 42 (12), 1995–2011. doi: 10.1016/0022-5096(94)90022-1
  • [6] Hill, R. (1963, September). Elastic properties of reinforced solids: Some theoretical principles. Journal of the Mechanics and Physics of Solids, 11 (5), 357–372. doi: 10.1016/0022-5096(63)90036-X
  • [7] Hill, R. (1965, August). A self-consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids, 13 (4), 213–222. doi: 10.1016/0022-5096(65)90010-4
  • [8] Huet, C. (1990, January). Application of variational concepts to size effects in elastic heterogeneous bodies. Journal of the Mechanics and Physics of Solids, 38 (6), 813–841. doi: 10.1016/0022-5096(90)90041-2
  • [9] Kanit, T., Forest, S., Galliet, I., Mounoury, V., & Jeulin, D. (2003, June). Determination of the size of the representative volume element for random composites: Statistical and numerical approach. International Journal of Solids and Structures, 40 (13), 3647–3679. doi: 10.1016/S0020-7683(03)00143-4
  • [10] Khisaeva, Z. F., & Ostoja-Starzewski, M. (2006, August). On the Size of RVE in Finite Elasticity of Random Composites. Journal of Elasticity, 85 (2), 153. doi: 10.1007/s10659-006-9076-y
  • [11] Mechleb, G., Gilbert, R., Christman, M., Gupta, R., & Gross, B. (2014, March). Use of Expanded Shale Amendment to Enhance Drainage Properties of Clays. Geo-Congress 2014 Technical Papers, 3444–3454. doi: 10.1061/9780784413272.334
  • [12] Ogierman, W., & Kokot, G. (2018, October). Generation of the representative volume elements of composite materials with misaligned inclusions. Composite Structures, 201, 636–646. doi: 10.1016/j.compstruct.2018.06.086
  • [13] Ostoja-Starzewski, M. (2006, April). Material spatial randomness: From statistical to representative volume element. Probabilistic Engineering Mechanics, 21 (2), 112–132. doi: 10.1016/j.probengmech.2005.07.007
  • [14] Pabst, W., & Gregorov’a, E. (2012, November). The sigmoidal average – a powerful tool for predicting the thermal conductivity of composite ceramics. Journal of Physics: Conference Series, 395 (1), 012021. doi: 10.1088/1742-6596/395/1/012021
  • [15] Ranganathan, S. I., & Ostoja-Starzewski, M. (2008, September). Scaling function, anisotropy and the size of RVE in elastic random polycrystals. Journal of the Mechanics and Physics of Solids, 56 (9), 2773–2791. doi: 10.1016/j.jmps.2008.05.001
  • [16] Savvas, D., Stefanou, G., & Papadrakakis, M. (2016, June). Determination of RVE size for random composites with local volume fraction variation. Computer Methods in Applied Mechanics and Engineering, 305, 340–358. doi: 10.1016/j.cma.2016.03.002
  • [17] Stefaniuk, D., Różański, A., & Łydżba, D. (2016). Recovery of microstructure properties: Random variability of soil solid thermal conductivity. Studia Geotechnica et Mechanica, Vol. 38 (nr 1). doi: 10.1515/sgem-2016-0011
  • [18] Trovalusci, P., Ostoja-Starzewski, M., De Bellis, M. L., & Murrali, A. (2015, January). Scale-dependent homogenization of random composites as micropolar continua. European Journal of Mechanics - A/Solids, 49, 396–407. doi: 10.1016/j.euromechsol.2014.08.010
  • [19] Wojciechowski, M. (n.d.). Fempy - finite element method in python. https://github.com/mrkwjc/fempy; http://fempy.org.
  • [20] Wojciechowski, M. (2017, September). Minimal Kinematic Boundary Conditions for Computational Homogenization of the Permeability Coefficient. Acta Mechanica et Automatica, 11 (3), 199–203. doi: 10.1515/ama-2017-0030
  • [21] Wojciechowski, M. (2022a, August). Dataset for random uniform distributions of 2D circles and 3D spheres. Data in Brief, 43, 108318. doi: 10.1016/j.dib.2022.108318
  • [22] Wojciechowski, M. (2022b, August). On generalized boundary conditions for mesoscopic volumes in computational homogenization. Composite Structures, 294, 115718. doi: 10.1016/j.compstruct.2022.115718
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1e0c8923-67e2-439c-b729-e9be67e18b2f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.