Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The cultivation of bean plants was carried out in greenhouse conditions using plastic trays with a capacity of 5 kilograms per tray. The results revealed a decrease in growth and some physiological traits of bean plants when the soil was treated with plastic particles at concentrations of 10, 15, 20, and 25 grams per kilogram. A noteworthy drop in the fresh weight of both parts above the soil and root parts was observed when treating the soil with plastic particles at a concentration of 25 grams per kilogram, measuring 2.59 grams and 3.2 grams, respectively. It was also observed that treating the soil with plastic particles at a concentration of 25 grams per kilogram caused a significant decrease in the concentrations of total chlorophyll, carotene, and Relative Water Content, reaching 0.788 milligrams per gram fresh weight, 0.268 milligrams per gram fresh weight, and 41.85%, respectively, collation to the domination treatment. Additionally, treating the soil with plastic particles resulted in an increase in proline concentration in the leaf tissues of bean plants. The highest increase was observed when treating the soil with plastic particles at a concentration of 25 grams per kilogram, with a magnitude of 0.703 milligrams per gram of fresh weight compared to the control treatment.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
319--326
Opis fizyczny
Bibliogr. 41 poz., rys.
Twórcy
- Department of Biology, College of Education for Pure Sciences, University of Mosul, Mosul, Iraq
autor
- Department of Biology, College of Education for Pure Sciences, University of Mosul, Mosul, Iraq
autor
- Department of Biology, College of Education for Pure Sciences, University of Mosul, Mosul, Iraq
Bibliografia
- 1. Abdul Jaleel, C., Jayakumar, K., Chang-Xing, Z., & Azooz, M. M. (2009). Antioxidant potentials protect Vigna radiata (L.) Wilczek Plant from Soil Cobalt Stress and Improve Growth and Pigment Composition. Plant Omics Journal, 2, 120–126.
- 2. Al-Rashedy, H. S. M. A. (2020). Effect of cobalt and nickel of on growth and some physiological aspects of mint (Mentha spicata). Plant Cell Biotechnology and Molecular Biology, 21,163–171.
- 3. Andrady, A. L. (2003). Plastics and the environment. Wiley, Hoboken, New Jersey, 792. https://doi.org/10.1002/0471721557
- 4. Anne, K., Undine, S., Maria, M., Katja, T., & Sara T. (2022). Effects of plastic fragments on plant performance are mediated by soil properties and drought. Scientific Reports. 12,17771. https://doi.org/10.1038/s41598-022-22270-5
- 5. Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid Determination of Free Proline for Water-Stress Studies. Plant and Soil, 39, 205–207. https://doi.org/10.1007/BF00018060
- 6. Bolan, N. S., Kirkham, M. B., Halsband, C., Nugegoda, D., & Ok, Y.S. (2020) Particulate plastics in terrestrial and aquatic environments. CRC Press. 1st Edition, 466. https://doi.org/10.1201/9781003053071
- 7. Bosker, T., Bouwman, L. J., Brun, N. R., Behrens, P., & Vijver M. G. (2019). Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum. Chemosphere, 226, 774–781. https://doi.org/10.1016/j.chemosphere.2019.03.163
- 8. De Silva, Y. S. K., Rajagopalan, U. M., & Kadono, H. (2021). Microplastics on the growth of plants and seed germination in aquatic and terrestrial ecosystems. Global J. Environ. Sci. Management, 7, 347–368. https://doi.org/10.22034/GJESM.2021.03.03
- 9. Enyoh, C. E., Verla, A. W., & Verla, E. N. (2019). Uptake of microplastics by plant: a reason to worry or to be happy. World Sci. News, 131, 256–267.
- 10. Enyoh, C. E., Verla, A. W., Verla, E. N., Ibe, F.C., & Amaobi, C.E. (2019). Airborne microplastics: a review study on method for analysis, occurrence, movement and risks. Environ. Monit. Assess, 191, 1–17. https://doi.org/10.1007/s10661-019-7842-0
- 11. Gao, H., Yan, C., Liu, Q., Ding, W., Chen, B., & Li Z. (2019). Effects of plastic mulching and plastic residue on agricultural production: A meta-analysis. Sci. Total Environ., 651, 484–492. https://doi.org/10.1016/j.scitotenv.2018.09.105
- 12. Geyer, R., Jambeck, J. R., & Law K. L. (2017). Production, use, and fate of all plastics ever made - supplementary information. Sci. Adv., 3, 19–24. https://doi:10.1126/sciadv.1700782
- 13. Gu, S. R., Zheng, H., Xu, Q. Q., Sun, C. Z., Shi, M., Wang, Z.Y., & Li, F.M. (2017). Comparative toxicity of the plasticizer dibutyl phthalate to two freshwater algae. Aquat. Toxicol., 191, 122–130. https://doi.org/10.1016/j.aquatox.2017.08.007
- 14. Harpreet, K. & Anjana, N. (2022). The effects of microplastics on plant growth and soil health in agricultural ecosystem. IJFANS International Journal of food and Nutritional Sciences. ISSN PRINT 2319 1775 Online 2320 7876.
- 15. Heba, E., Azza, A. M., Amina, Z., Sara, M. A., Nour, O. A., Doaa, S. Al.,Nora, R.A., Amira, O. A., Rehab, E.H., Hala, M. E., Bodor, E., Safaa, A., Sherifa, F.M. D.,Amany, A., Aisha, M. S., Al-Zahraa, E.E. E. & Marwa, D. (2022). Impact of pollution by microplastic on soil, soil microbes and plants and its remediation by the biochar: A review. Egypt. J. Soil Sci. 62(4), 325–334. https://doi.org/10.21608/EJS.2022.156330.1526
- 16. Huerta-Lwanga, E., Gertsen, H., Gooren, H., Peters, P., Salanki, T., Ploeg, M. V, D., Besseling, E., Koelmans, A., & Geissen, V. (2017). Incorporation of microplastics from litter into burrows of Lumbricus terrestris. Environmental Pollution, 220, 523–531. https://doi.org/10.1016/j.envpol.2016.09.096
- 17. Jie, Z. A.,Yuan,W., Miles, R. M., Jie, Z., Heng,G. d., Yadong, Y., Zhaohai, Z., Davey, L. J. & Huadong, Z. (2021). Microplastics as an emerging threat to plant and soil health in agroecosystems. Science of the Total Environment 787: 147444. https://doi.org/10.1016/j.scitotenv.2021.147444
- 18. Lambert, S., Scherer, C., & Wagner, M. (2017). Ecotoxicity testing of microplastics: considering the heterogeneity of physicochemical properties. Integrated Environmental Assessment and Management, 13, 470–475. https://doi.org/10.1002/ieam.1901
- 19. Laura, M. H., Elvis, G. X., Hans, C. E. L., Rui, T., Vimal, B. M., & Nathalie, T. (2019). plastic teabags release billions of microparticles and nanoparticles into tea. Environ. Sci. Technol., 53, 12300–12310. https://doi.org/10.1021/acs.est.9b02540
- 20. Lee, J. G., Cho, S. R., Jeong, S. T., Hwang, H. Y., & Kim, P. J. (2019). Different response of plastic film mulching on greenhouse gas intensity (GHGI) between chemical and organic fertilization in maize upland soil. Sci. Total Environ., 696, 133827. https://doi.org/10.1016/j.scitotenv.2019.133827
- 21. Li, L., Zhou, Q., Yin, N., Tu, C., & Luo, Y. (2019). Uptake and accumulation of microplastics in an edible plant. Chin. Sci. Bull., 64(9): 928–934. https://doi.org/10.1360/N972018-00845
- 22. Liu, M., Lu, S., Song, Y., Lili, L., Jiani, H., Weiwei, L., Wenzong, Z., Chengjin, C., Huahong, S., Xiaofeng, Y., & Defu, H. (2018). Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China. Environ. Pollut., 242, 855–862. https://doi.org/10.1016/j.envpol.2018.07.051
- 23. Ma, D., Chen, L., Qu, H., Wang, Y., Misselbrook, T., & Jiang, R., (2018) Impacts of plastic film mulching on crop yields, soil water, nitrate, and organic carbon in Northwestern China: a meta-analysis. Agric. Water Manag., 202,166-173. https://doi.org/10.1016/j.agwat.2018.02.001
- 24. Machado, A. A. S., Lau, C. W., Till J., Kloas, W., Lehmann, A., Becker, R., Rillig, M.C. (2018). Impacts of microplastics on the soil biophysical environment. Environmental Science and Technology, 52, 9656–9665. https://doi.org/10.1021/acs.est.8b02212
- 25. Mao, Y., Ai, H., Chen, Y., Zhang, Z., Zeng, P., Kang, L., Li, W., Gu, W., He, Q., & Li H. (2018) Phytoplankton response to polystyrene microplastics: Perspective from an entire growth period. Chemosphere, 208, 59–68. https://doi.org/10.1016/j.chemosphere.2018.05.170
- 26. Nasrin, G., & Rasool, Z. (2022). Effect of plastic pollution in soil properties and growth of grass species in semi-arid regions: a laboratory experiment. Environmental Science and Pollution Research, 29, 59118–59126. https://doi.org/10.1007/s11356-022-19373-x
- 27. Rasheed, M. M., Saeed, I. O., & Ibrahim, O. M. (2024). Concentrations of some heavy metals in plants adjacent to the Tigris River, Iraq. Nativa, 12, 191–194. https://doi.org/10.31413/nativa.v12i1.17292
- 28. Plastic Europe, (2019), Plastic the facts. An analysis of European plastic production, demand and waste data. Published on the occasion of the special show of K. A project of the German plastics industry under the leadership of Plastics Europe Deutschland e. V. and Messe Düsseldorf.
- 29. Prata, J. C. (2018). Airborne microplastics: Consequences to human health. Environ Pollut., 234: 115–126. https://doi.org/10.1016/j.envpol.2017.11.043
- 30. Qi, Y., Yang, X., Pelaez, A. M., Huerta, Lwanga, E. H., Beriot, N., Gertsen, H., Garbeva, P., & Geissen, V., (2018). Macro- and micro-plastics in soilplant system: efects of plastic mulch flm residues on wheat (Triticum aestivum) growth. Sci. Total Environ., 645, 1048–1056. https://doi.org/10.1016/j.scitotenv.2018.07.229
- 31. Rillig, M. C., Lehmann, A., Machado A. A. D. S., & Yang, G., (2019), Microplastic effects on plants. New Phytol., 223(3), 1043-1681. https://doi.org/10.1111/nph.15794
- 32. Sajiki J., & Yonekubo J. (2003). Leaching of bisphenol, A (BPA) to seawater from polycarbonate plastic and its degradation by reactive oxygen species. Chemosphere, 51, 55–62. https://doi.org/10.1016/S0045-6535(02)00789-0
- 33. Turner, N. C. (1981). Techniques and experimental approaches for the measurements of plant water status. Plant and Soil, 58, 336–339. https://doi.org/10.1007/BF02180062
- 34. Udochukwu, U., Atuanya, E.I., & Abidemi, J.M. (2017). Eco toxicological effects of plastic-enriched composting waste on soil biological sentinels. Nigerian Journal of Scientific Research, 16(1): 35–40.
- 35. Urbina, M. A., Correa, F., Aburto, F., & Juan, P. F. (2020). Adsorption of polyethylene microbeads and physiological efects on hydroponic maize. Sci. Total Environ., 741, 140216. https://doi.org/10.1016/j.scitotenv.2020.140216
- 36. Verla, A. W., Enyoh, C. E., Verla, E. N., & Kieran, O. N. (2019). Microplastic-toxic chemical interaction: a review study on quantified levels, mechanism and implications. Springer Nature App. Sci., 1, 1400. https://doi.org/10.1007/s42452-019-1352-0
- 37. Wan, Y., Wu, C., Xue, Q., & Hui, X. (2019). Effects of plastic contamination on water evaporation and desiccation cracking in soil. Science of the Total Environment, 654,576–582. https://doi.org/10.1016/j.scitotenv.2018.11.123
- 38. Weithmann, N., Möller, J. N., Löder, M. G. J., Piehl, S., Laforsch, C., & Freitag, R. (2018). Organic fertilizer as a vehicle for the entry of microplastic into the environment. Sci. Adv., 4(4), 1179–8060. https://doi.org/10.1126/sciadv.aap8060
- 39. Xu, Z., Xiong, X., Zhao, Y., Xiang, W., Wu, C. (2020). Pollutants delivered every day: phthalates in plastic express packaging bags and their leaching potential. J. Hazard Mater., 384, 121–282. https://doi.org/10.1016/j.jhazmat.2019.121282
- 40. Zang, H., Zhou, J., Marshall, M. R., Chadwick, D.R., Wen, Y., & Jones, D. L. (2020). Microplastics in the agroecosystem: are they an emerging threat to the plant-soil system. Soil Biol. And Biochem., 148, 107926. https://doi.org/10.1016/j.soilbio.2020.107926
- 41. Zhan, Z., Wang, J., Peng, J., Xie, Q., Huang., Y., & Gao, Y. (2016). Sorption of 3,3-,4,4-tetrachlorobiphenyl by microplastics: a case study of polypropylene. Marine Pollution Bulletin, 110(1), 559–563. https://doi.org/10.1016/j.marpolbul.2016.05.036
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1e0b5a1f-f72d-4eea-bd0f-3b04be6aba90
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.