PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Respiratory sound denoising using sparsity-assisted signal smoothing algorithm

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Noises are the unavoidable entities which stands as a big barrier in the field of computerized lung sound (LS) based disease diagnosis, as it impairs the quality of LS and therefore greatly misleads the clinical interpretations done based on that. It has numerous sources, of which a few of them could be the noises due to body sounds, environmental noises, power line noises and recording artifacts, which easily contaminates the LS recordings. This paper presents a novel denoising algorithm to eliminate the noises from LS recordings in a more powerful way using Butterworth band-pass filter and sparsity assisted signal smoothing (SASS) algorithm. This study is carried out over LS captured from 80 Chronic Obstructive Pulmonary Disease (COPD), 80 pneumonia and 80 healthy participants in a clinical environment. Each of the recorded LS is denoised using Butterworth band-pass filter and sparse-assisted signal smoothing algorithm. The denoising performance of the proposed algorithm is evaluated on the basis of denoising performance parameters. As per the evaluation of the denoising performance parameters, it is observed that the proposed denoising method suppressed the LS noises with the signal to noise ratio (SNR) of 66.8 dB and with the peak signal to noise ratio (PSNR) of 78.5 dB. The proposed endeavour can be recommended for clinical use for producing noise free LSs to bring effective interpretations. The future endeavours involve the suppression of the heart sound noises from the LS recordings.
Twórcy
  • Department of Biomedical Engineering, V.S.B. Engineering College, Karur, Tamil Nadu, 639111, India
  • Department of Pulmonary Medicine & TB, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
Bibliografia
  • [1] Sarkar M, Madabhavi I, Niranjan N, Dogra M. Auscultation of the respiratory system. Annals Thoracic Med 2015;10(3):158.
  • [2] Andrès E, Gass R, Charloux A, Brandt C, Hentzler A. Respiratory sound analysis in the era of evidence-based medicine and the world of medicine 2.0. J Med Life 2018;11 (2):89.
  • [3] Haider NS, Joseph J, Periyasamy R. An investigation on the statistical significance of spectral signatures of lung sounds. Biomed Res (0970–938X) 2017;28(6).
  • [4] Emmanouilidou D, Elhilal M. Characterization of noise contaminations in lung sound recordings. In: 2013 35th Annual International Conference of the IEEE Engineering In Medicine And Biology Society (EMBC). IEEE; 2013. p. 2551–4.
  • [5] Kim Y, Hyon Y, Jung SS, Lee S, Yoo G, Chung C, et al. Respiratory sound classification for crackles, wheezes, and rhonchi in the clinical field using deep learning. Sci Rep 2021;11(1). 1-1.
  • [6] Selesnick IW. Sparsity-assisted signal smoothing. Excurs Harm Anal 2015;4:149–76. Birkhauser, Cham.
  • [7] Selesnick I. Sparsity-assisted signal smoothing (revisited). In: 2017 IEEE International Conference On Acoustics, Speech And Signal Processing (ICASSP). IEEE; 2017. p. 4546–50.
  • [8] Hossain I, Moussavi Z. An overview of heart-noise reduction of lung sound using wavelet transform based filter. Proceedings of the 25th Annual International Conference Of The IEEE Engineering in Medicine and Biology Society (IEEE Cat. No. 03CH37439) 2003:458–61.
  • [9] Hadjileontiadis LJ. Empirical mode decomposition and fractal dimension filter. IEEE Eng Med Biol Mag 2007;26(1):30.
  • [10] Tsalaile T, Sameni R, Sanei S, Jutten C, Chambers J. Sequential blind source extraction for quasi-periodic signals with time-varying period. IEEE Trans Biomed Eng 2008;56 (3):646–55.
  • [11] Falk TH, Chan WY. Modulation filtering for heart and lung sound separation from breath sound recordings. In: 2008 30th Annual International Conference Of the IEEE Engineering In Medicine And Biology Society. IEEE; 2008. p. 1859–62.
  • [12] Mondal A, Bhattacharya PS, Saha G. Reduction of heart sound interference from lung sound signals using empirical mode decomposition technique. J Med Eng Technol 2011;35(6–7):344–53.
  • [13] Li T, Tang H, Qiu T, Park Y. Heart sound cancellation from lung sound record using cyclostationarity. Med Eng Phys 2013;35(12):1831–6.
  • [14] Zivanovic M, González-Izal M. Quasi-periodic modeling for heart sound localization and suppression in lung sounds. Biomed Signal Process Control 2013;8(6):586–95.
  • [15] Molaie M, Jafari S, Moradi MH, Sprott JC, Golpayegani SM. A chaotic viewpoint on noise reduction from respiratory sounds. Biomed Signal Process Control 2014;10:245–9.
  • [16] Chao C-T, Maneetien N, Wang C-J, Chiou J-S. Performance evaluation of heart sound cancellation in FPGA hardware implementation for electronic stethoscope. Sci World J 2014;2014:1–7.
  • [17] Emmanouilidou D, McCollum ED, Park DE, Elhilali M. Adaptive noise suppression of pediatric lung auscultations with real applications to noisy clinical settings in developing countries. IEEE Trans Biomed Eng 2015;62(9):2279–88.
  • [18] Mondal A, Banerjee P, Somkuwar A. Enhancement of lung sounds based on empirical mode decomposition and Fourier transform algorithm. Comput Methods Programs Biomed 2017;139:119–36.
  • [19] Emmanouilidou D, McCollum ED, Park DE, Elhilali M. Computerized lung sound screening for pediatric auscultation in noisy field environments. IEEE Trans Biomed Eng 2017;65(7):1564–74.
  • [20] Syahputra MF, Situmeang SIG, Rahmat RF, Budiarto R. Noise reduction in breath sound files using wavelet transform based filter. IOP Conf Ser: Mater Sci Eng 2017;190:012040.
  • [21] Shanthakumari G, Priya E. performance analysis: preprocessing of respiratory lung sounds. In: International Conference Of The Sri Lanka Association For Artificial Intelligence. Singapore: Springer; 2018. p. 289–300.
  • [22] Haider NS, Periyasamy R, Joshi D, Singh BK. Savitzky-Golay filter for denoising lung sound. Braz Arch Biol Technol 2018;61.
  • [23] Meng F, Wang Y, Shi Y, Zhao H. A kind of integrated serial algorithms for noise reduction and characteristics expanding in respiratory sound. Internat J Biol Sci 2019;15(9):1921–32.
  • [24] Naqvi SZ, Choudhry MA. An automated system for classification of chronic obstructive pulmonary disease and pneumonia patients using lung sound analysis. Sensors 2020;20(22):6512.
  • [25] Singh D, Singh BK, Behera AK. Comparative analysis of Lung sound denoising technique. In: 2020 First International Conference on Power, Control and Computing Technologies (ICPC2T). IEEE; 2020. p. 406–10.
  • [26] Haider NS. Respiratory sound denoising using empirical mode decomposition, hurst analysis and spectral subtraction. Biomed Sig Process Control 2021;64:102313.
  • [27] Abougabal MM, Moussa ND. A novel technique for validating diagnosed respiratory noises in infants and children. Alex Eng J 2018;57(4):3033–41.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1e0a3121-37e0-4720-8474-676dcd77d4f7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.