Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Methane and coal dust explosions are among the most common causes of disasters in hard coal mining. Therefore, it is important for occupational safety in hard coal mines operating under methane and coal dust explosion hazards to identify possible ignition sources, whether due to natural or technical factors. One technical source of ignition can be mechanical sparks generated during operation of mechanical equipment and high surface temperatures of equipment components during operation. This paper presents the methodology and results of thermal imaging and strength testing of roadway support elements under dynamic loading. The goal of the tests was to identify the potential explosive atmosphere ignition sources during the operation of the support under the conditions of rock bursts. The scope of testing encompassed the temperature measurements by means of thermal camera of friction prop and yielding support frame sliding joint elements at yield under dynamic impact loading (simulating a burst). Significant joint element heating and mechanical sparking was observed during the testing of arching yielding support frame sliding joints and straight friction prop joints as a result of friction at yield. Some of the aspects defined in standard PN-EN ISO80079-36:2016 include the maximum temperature T max =150°C for a surface that can accumulate a layer of coal dust. Tests of the friction joints have shown that during impact loading, numerous mechanical sparks are produced at the friction joints of sections of the steel prop, with the surface temperature of the sections starting from 169.6°C and reaching up to 234.1°C. During tests it was also to determined emissivites of the tested sliding joints constructed from V29-V32 secrions depending on corrosion products which consist in range 0.842-0.873. Such a high temperature can initiate an explosive mixture consisting of methane, air and coal dust.
Wydawca
Czasopismo
Rocznik
Tom
Strony
144--157
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
autor
- Główny Instytut Górnictwa: Glowny Instytut Gornictwa, Katowice, Poland
autor
- Główny Instytut Górnictwa: Glowny Instytut Gornictwa, Katowice, Poland
Bibliografia
- [1] Brodny J. (2012a). Work parameter identification of sliding joints utilised in yielding steel arch support. Wydawnictwo Politechniki Śląskiej, Gliwice (in Polish).
- [2] Brodny J. (2012b). Analysis of operation of new construction of the frictional joint with the resistance wedge. Archives of Mining Sciences, 57(1), 209-227.
- [3] Brodny J. (2013). Analysis of operation of arch frictional joint loaded with the impact of freely falling mass. Studia Geotechnica et Mechanica, 35(1), 59-72.
- [4] Brune J. F. (2013). The methane-air explosion hazard within coal mine gobs. SME Transactions, 334, 376-390.
- [5] Burtan Z., Stasica J., Rak Z. (2017). The influence of natural hazards of disasters on the work safety conditions in Polish coal mining in the years 2000–2016. Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią Polskiej Akademii Nauk, 101, 7-18 (in Polish).
- [6] Ciałkowski B. (1996). Theoretical and experimental foundations of the construction of ŁP support joints for excavations at risk of rock bursts. PhD dissertation. Główny Instytut Górnictwa, Katowice (in Polish).
- [7] Cioca I. L., & Moraru R. I. (2012). Explosion and / or fire risk assessment methodology: a common approach, structured for underground coalmine environments. Archives of Mining Sciences, 57(1), 53-60.
- [8] Cybulski K., Dyduch Z., Hildebrandt R., Koptoń H. (2018). Development of methane explosions in the underground experimental facilities of GIG EM Barbara. Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN, 29–40 (in Polish).
- [9] Dubiński J., Konopko W. (2000). Rock bursts: evaluation, forecast, elimination. Główny Instytut Górnictwa, Katowice (in Polish).
- [10] Eckhoff R. K. (2006). Differences and similarities of gas and dust explosions: A critical evaluation of the European ‘ATEX’directives in relation to dusts. Journal of loss prevention in the process industries, 19(6), 553-560.
- [11] Gakhar S. J., Taylor S. D., Barker I., Clayton P. (2006). Practical experience in carrying out non-electrical equipment ignition risk assessments. In INSTITUTION OF CHEMICAL ENGINEERS SYMPOSIUM SERIES (Vol. 151, p. 422). Institution of Chemical Engineers; 1999.
- [12] Ghicioi E., Paraian M., Ridzi T. I., Vatavu N., Lupu L., Jurca A. (2010a). IMPLEMENTING NEW TOOLS FOR THE ASSESSMENT OF NON-ELECTRICAL EQUIPMENT USED IN UNDERGROUND MINES. IN ACCORDANCE WITH THE EUROPEAN DIRECTIVE ATEX 94/9/ EC, ADOPTED IN ROMANIA BY GOVERNMENT DECISION NO. 752/2004. Revista Minelor / Mining Revue, 16(1).
- [13] Ghicioi E., Paraian M., Lupu L., Jurca A. M. (2010b). NEW TOOLS FOR ASSESSMENT OF NON-ELECTRICAL EQUIPMENT INTENDED USE IN FIREDAMP UNDERGROUND MINES, RELATED TO EUROPEAN DIRECTIVE ATEX 94/9/EC, ADOPTED IN ROMANIA BY GOVERNMENT DECISION NO. 752/2004. Annals of the University of Petrosani Mining Engineering, 11.
- [14] Górny M. (2013). History of explosion safety in Poland. Bezpieczeństwo przeciwwybuchowe – wybrane zagadnienia. Praca zbiorowa. Główny Instytut Górnictwa, Katowice, 7-23 (in Polish).
- [15] Górny M. (2017). Ignition risk assessment of nonelectrical part of drive system. Napędy i Sterowanie, 19, Nr 10, 82-88 (in Polish).
- [16] Hao F., Liu M., Zuo W. (2014). Coal and gas outburst prevention technology and management system for Chinese coal mines: a review. In Mine Planning and Equipment Selection, Springer, Cham, 581-600.
- [17] Horst R., Modrzik M., Ficek P., Rotkegel M., Pytlik A. (2018). Corroded steel support friction joint load capacity studies as found in Piast-Ziemowit coal mine. Mining–Informatics, Automation and Electrical Engineering, 56, 81-87.
- [18] Horyl P, Šňupárek R., Marsalek P. (2014). Behaviour of frictional joints in steel arch yielding supports. Archives of Mining Sciences 59 (3), 723-734.
- [19] Horyl P, Šňupárek R., Marsalek P., Pacześniowski K. (2017). Simulation of laboratory test of steel arch support. Archives of Mining Sciences 62 (1), 163-176.
- [20] Horyl P., Šňupárek R., Maršálek P., Poruba Z., Pacześniowski K. (2019). Parametric Studies of Total Load-Bearing Capacity of Steel Arch Supports. Acta Montanistica Slovaca, 24(3), 213- 222.
- [21] Hudeček V., Zapletal P., Stoniš M., Sojka R. (2012). New recommendations in the area of prediction and prevention of rock and gas outbursts in the Czech Republic. Rudarsko-geološko-naftni zbornik, 25(1), 101-106.
- [22] Jespen T. (2016). ATEX—Equipment Selection. In: ATEX— Explosive Atmospheres. Springer Series in Reliability Engineering. Springer, Cham.
- [23] Jurca A. M., Vătavu N., Lupu L., Popa M. (2020). Determining the maximum surface temperature for non-electrical equipment aiming at explosion prevention at protection. In MATEC Web of Conferences (Vol. 305, p. 00026). EDP Sciences.
- [24] Kałuża G. (2017). Temperature measurements in the process of testing explosion-proof devices. Maszyny Elektryczne: zeszyty problemowe Nr 1/2017 (113), 85-89 (in Polish).
- [25] Krause E., Smoliński A. (2013). Analysis and assessment of parameters shaping methane hazard in longwall areas. Journal of Sustainable Mining, 12(1), 13-19.
- [26] Krause E., Skiba J. (2014). Formation of methane hazard in longwall coal mines with increasingly higher production capacity. International Journal of Mining Science and Technology, 24(3), 403-407.
- [27] Lebecki K., Cybulski K., Śliz J., Dyduch Z., Wolański P. (1995). Large scale grain dust explosions-research in Poland. Shock Waves, 5(1-2), 109-114.
- [28] Li G., Shang R. X., Yu Y. J., Wang J. Z., Yuan C. M. (2013). Influence of coal dust on the ignition of methane/air mixtures by friction sparks from rubbing of titanium against steel. Fuel, 113, 448-453.
- [29] Petitfrere C., Proust C. (2006). Analysis of ignition risk on mechanical equipment in ATEX. In 2007 4th European Conference on Electrical and Instrumentation Applications in the Petroleum & Chemical Industry (pp. 1-9). IEEE.
- [30] Polski Komitet Normalizacyjny (2016). Explosive atmospheres — Part 36: Non-electrical equipment for explosive atmospheres — Basic method and requirements PN-EN ISO 80079-36:2016- 07. Warszawa (in Polish).
- [31] Polski Komitet Normalizacyjny (1997). Polish Standard: Single prop mine support. Friction props. Requirements and testing. PN-G-15533:1997. Warszawa (in Polish).
- [32] Polski Komitet Normalizacyjny (2004). Polish Standard: Hotrolled steel sections for mining. V sections. Dimensions. PN-H-93441-3:2004. Warszawa (in Polish).
- [33] Pacześniowski K., Pytlik A. (2008). Methodology of dynamic load capacity determination of frictional joints applied in mining support. Prace Naukowe GIG. Górnictwo i Środowisko. Główny Instytut Górnictwa, 63-71 (in Polish).
- [34] Prostański D. (2018). Development of research work in the air-water spraying area for reduction of methane and coal dust explosion hazard as well as for dust control in the Polish mining industry. In IOP Conference Series: Materials Science and Engineering (Vol. 427, No. 1, p. 012026). IOP Publishing.
- [35] Pytlik A. (2019a). Tests of steel arch and rock bolt support resistance to static and dynamic loading induced by suspended monorail transportation. Studia Geotechnica et Mechanica 41 (2), 81-92.
- [36] Pytlik A. (2019b). Comparative bench testing of steel arch support systems with and without rock bolt reinforcements. Archives of Mining Sciences, 64.
- [37] Pytlik A. (2020). Experimental Studies of Static and Dynamic Steel Arch Support Load Capacity and Sliding Joint Temperature Parameters During Yielding. Archives of Mining Sciences, 469- 491.
- [38] Pytlik A., Tokarczyk J., Frąc W., Michalak D. (2021). Explosive atmosphere ignition source identification during mining plant suspended monorail braking unit operation. ACTA MONTANISTICA SLOVACA, 26(2), 338-351.
- [39] Rogers, R. L. (2003). Development of European standards: non-electrical equipment for use in explosive atmospheres. In INSTITUTION OF CHEMICAL ENGINEERS SYMPOSIUM SERIES (Vol. 149, pp. 461-476). Institution of Chemical Engineers; 1999.
- [40] Shao X. Q., Ma X. M. (2012). The design of Coal mine construction safety monitoring system. In Applied Mechanics and Materials (Vol. 174, pp. 3459-3462). Trans Tech Publications Ltd.
- [41] Shepherd J., Rixon L. K., Griffiths L. (1981). Outbursts and geological structures in coal mines: a review. In International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 18, No. 4, Pergamon, 267-283.
- [42] Song W., Cheng J., Wang W., Qin Y., Wang Z., Borowski M., Wang Y., Tukkaraja, P. (2021). Underground mine gas explosion accidents and prevention techniques–an overview. Archives of Mining Sciences, 66(2), 297-312.
- [43] Takla G., Vavrusak Z. (1999). Coal Seam Gas Emissions from Ostrava—Karvina Collieries in the Czech Republic during Mining and after Mines Closure. In Coalbed Methane: Scientific, Environmental and Economic Evaluation, Springer Dordrecht, 395-409.
- [44] Thurnherr P., Schwarz G., Oberhem H. (2007). Non-Electrical Equipment for Potentially Explosive Atmospheres. In 2007 IEEE Petroleum and Chemical Industry Technical Conference (pp. 1-9). IEEE.
- [45] Trenczek S. (2015). Methane ignitions and explosions in the context of the initials related to technical and natural hazards. Przegląd Górniczy, 71(2), 87-92 (in Polish).
- [46] Yuan L. (2016). Control of coal and gas outbursts in Huainan mines in China: A review. Journal of Rock Mechanics and Geotechnical Engineering, 8(4), 559-567.
- [47] Zhang L., Wang H., Chen C., Wang P., Xu L. (2021). Experimental study to assess the explosion hazard of CH4 / coal dust mixtures induced by high-temperature source surface. Process Safety and Environmental Protection, 154, 60-71.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1e09daf6-5125-4643-80da-c268b59239ae