Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents the technology of bimetallic castings using the casting method of applying layers directly during the casting process. The bimetallic casting consists of a load-bearing part (typical casting material, i.e. gray cast iron with flake graphite) and a working part (titanium insert). The titanium insert was made by printing using the selective laser melting (SLM) method, and its shape was spatial. The verification of the bimetallic castings was carried out mainly based on metallographic tests, temperature and thickness measurements. Structure examinations containing metallographic microscopic studies with the use of a light microscope (LOM) and a scanning electron microscope (SEM) with microanalysis of the chemical composition (energy dispersive spectroscopy - EDS).The aim of the tests was to select the appropriate geometrical insert parameters for bimetallic castings within the tested range. The correct parameters of both the insert, pouring temperature and the casting modulus affect the diffusion processes and, consequently, the formation of carbides and the creation of bimetallic castings.
Czasopismo
Rocznik
Tom
Strony
21--28
Opis fizyczny
Bibliogr. 17 poz., il., tab., wykr.
Twórcy
autor
- Silesian University of Technology, Faculty of Mechanical Engineering, Department of Foundry Engineering, Gliwice, Poland
Bibliografia
- [1] Larsen, J.M., Russ, S.M. & Jones, J.W. (1995). An evaluation of fiber-reinforced titanium matrix composites for advanced high-temperature aerospace applications. Metallurgical and Materials Transactions A. 26(12), 3211- 3223. DOI: 10.1007/BF02669450.
- [2] Falodun, O.E., Obadele, B.A., Oke, S.R., Okoro, A.M. & Olubambi, P.A. (2019). Titanium-based matrix composites reinforced with particulate, microstructure, and mechanical properties using spark plasma sintering technique: a review. The International Journal of Advanced Manufacturing Technology. 102, 1689-1701. https://doi.org/10.1007/s00170-018-03281-x.
- [3] Mahmood, M.A., Popescu, A.C. & Mihailescu, I.N. (2020). Metal matrix composites synthesized by laser-melting deposition: a review. Materials. 13(11), 2593, 1-28. DOI:10.3390/ma13112593.
- [4] Choi, B.J., Kim, I.Y., Lee, Y.Z. & Kim, Y.J. (2014). Microstructure and friction/wear behavior of (TiB + TiC) particulate-reinforced titanium matrix composites. Wear. 318(1-2), 68-77. DOI: 10.1016/j.wear.2014.05.013.
- [5] Attar, H., Ehtemam-Haghighi, S., Kent, D., Okulov, I. V., Wendrock, H., Bӧnisch, M., Volegov, A.S., Calin, M., Eckert, J. & Dargusch, M.S. (2017). Nanoindentation and wear properties of Ti and Ti-TiB composite materials produced by selective laser melting. Materials Science and Engineering: A. 688, 20-26. https://doi.org/10.1016/j.msea.2017.01.096.
- [6] Banerjee, D. & Willians, J.C. (2013). Perspectives on titanium science and technology. Acta Materialia. 61, 844- 879. http://dx.doi.org/10.1016/j.actamat.2012.10.043.
- [7] Chadwick, S.S. (1988) Ulman's Encyclopedia of Industrial Chemistry. Weinheim, Germany.
- [8] Xue, N.P., Wu, Q., Zhang, Y., Li, B.H., Zhang, Y.D., Yang, S., Zhu, Y., Guo, J. & Gao, H.J. (2023). Review on research progress and comparison of different residua stress strengthening methods for titanium alloys. Engineering Failure Analysis. 144, 106937, 1-18. https://doi.org/10.1016/j.engfailanal.2022.106937.
- [9] Ziemnicka, M. (2010). Ceramic materials in the system of Ti-N2-C. PhD thesis, AGH, Kraków. (in Polish).
- [10] Strzęciwilk, D., Tkacz, P. & Wokulski, Z. (2000). Transmission electron microscope studies of TiC crystals. Crystal Research and Technology. 35(11-12), 1295-1303. https://dx.doi.org/10.1002/1521-4079(200011)35:11/123.0. CO;2-H.
- [11] Nie, J., Wu, Y., Li, P., Li, H. & Liu, X. (2012). Morphological evolution of TiC from octahedron to cube induced by elemental nickel. CrystEngComm. 14(6), 2213- 2221. DOI:10.1039/C1CE06205K.
- [12] Kaczmar, J. W., Pietrzak, K. & Włosiński, W. (2000). The production and application of metal matrix composite materials. Journal of Materials Processing Technology. 106(1-3), 58-67. https://doi.org/10.1016/S0924- 0136(00)00639-7.
- [13] Liggett, J.C., Snelling, D. A., Xu, M., Myers, O. J., Thompson, S. M. (2021). Bimetallic castings for wear performance through infiltration of additive manufactured metal lattice structures. Solid Freeform Fabrication 2021: Proceedings of the 32nd Annual International. http://dx.doi.org/10.26153/tsw/17599.
- [14] Wróbel, T. (2014). Characterization of bimetallic castings with an austenitic working surface layer and an unalloyed cast steel base. Journal of Materials Engineering and Performance. 23(5), 1711-1717. DOI: 10.1007/s11665-014- 0953-4.
- [15] Wróbel, T., Przyszlak, N. & Dulska, A. (2019). Technology of alloy layers on surface of castings. International Journal of Metalcasting. 13(3), 604-610. https://doi.org/10.1007/s40962-018-00304-x.
- [16] Dulska, A., Szajnar, J. & Król, M. (2021). Analysis of the mechanical properties of the titanium layer obtained by the mold cavity preparation method. Archives of Metallurgy and Materials. 66(1), 51-56. DOI: 10.24425/amm.2021.134758.
- [17] Szajnar, J., Walasek, A. & Baron, C. (2013). Tribological and corrosive properties of the parts of machines with surface alloy layer. Archives of Metallurgy and Materials. 58(3), 931-936. DOI:10.2478/amm-2013-0104
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1e037446-3a3e-41fe-8732-a80aea179c28