Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Platooning is a future approach to autonomous driving in which vehicle-to-vehicle and vehicle-to-infrastructure communications play an important role. Tests performed in the past showed that a significant reduction in fuel consumption is possible when cars are traveling in a dense platoon formation. To increase the level of their awareness of the surrounding objects and to maintain a very short distance to the preceding vehicle, highly reliable on-board sensors are required. This paper discusses the impact of sensor inaccuracy on the performance and behavior of and autonomous vehicle platoon that makes use of wireless communications supported by context information from various databases and maps.
Słowa kluczowe
Rocznik
Tom
Strony
78--85
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
- Institute of Radiocommunications Faculty of Electronics and Telecommunications Poznan University of Technology Polanka 3 60-965 Poznan, Poland
autor
- Institute of Radiocommunications Faculty of Electronics and Telecommunications Poznan University of Technology Polanka 3 60-965 Poznan, Poland
autor
- Institute of Radiocommunications Faculty of Electronics and Telecommunications Poznan University of Technology Polanka 3 60-965 Poznan, Poland
Bibliografia
- [1] A. Osseiran et al., „Scenarios for 5G mobile and wireless communications: the vision of the METIS project", IEEE Commun. Mag., vol. 52, no. 5, pp. 26-35, 2014 (DOI: 10.1109/MCOM.2014.6815890).
- [2] E. Chan, „Overview of the SARTRE platooning project: Technology leadership brief", SAE Technical Paper 2012-01-9019, 2012 (DOI: 10.4271/2012-01-9019).
- [3] S. Tsugawa, S. Kato, and K. Aoki, „An automated truck platoon for energy saving", in Proc. IEEE/RSJ Int. Conf. on Intell. Robots and Sys., San Francisco, CA, USA, 2011 pp. 4109-4114 (DOI: 10.1109/IROS.2011.6094549).
- [4] J. Ploeg et al., „Design and experimental evaluation of cooperative adaptive cruise control", in Proc. of the 14th Int. IEEE Conf. On Intell. Transport. Syst. ITSC 2011, Washington, DC, USA, 2011, pp. 260-265 (DOI: 10.1109/ITSC.2011.6082981).
- [5] D. Jia et al., „A survey on platoon-based vehicular cyber-physical systems", IEEE Commun. Surv. Tutor., vol. 18, no. 1, pp. 263-284, 2016 (DOI: 10.1109/COMST.2015.2410831).
- [6] S. Tsugawa, S. Jeschke, and S. E. Shladover, „A review of truck platooning projects for energy savings", IEEE Trans. on Intell. Veh., vol. 1, no. 1, pp. 68-77, 2016 (DOI: 10.1109/TIV.2016.2577499).
- [7] P. Sroka et al., „Szeregowanie transmisji wiadomości typu BSM w celu poprawy działania kooperacyjnego adaptacyjnego tempomatu (Improvement of cooperative adaptive cruise control operation by scheduling of BSM messages)", Przegląd Telekomunikacyjny+Wiadomości Telekomunikacyjne, vol. 2017, no. 6, pp. 350-355, 2017 (DOI 10.15199/59.2017.6.45) [in Polish].
- [8] M. Sybis et al., „Communication aspects of a modified cooperative adaptive cruise control algorithm", IEEE Trans. on Intell. Transport. Syst., vol. 20, no. 12, pp. 4513-4523, 2019 (DOI: 10.1109/TITS.2018.2886883).
- [9] „Overview of Data Accuracy Evaluations for STMS Vehicle Detectors", Tech. Rep., Sensebit AB, Dec. 2012 [Online]. Available: http://sensebit.se/wp-content/uploads/2015/02/Overview-of-dataaccuracy-evaluations-for-STMS-vehicle-detectors-2013.pdf
- [10] F. de Ponte Müller, E. Diaz, and I. Rashdan, „Cooperative positioning and radar sensor fusion for relative localization of vehicles", in Proc. of the 2016 IEEE Intell. Veh. Symp. IV 2016, Gothenburg, Sweden, 2016 (DOI: 10.1109/IVS.2016.7535520).
- [11] „Short range radar SRR320", Continental AG [Online]. Available: https://www.continental-automotive.com/en-gl/2-Wheeler/Safe-Mobility/Sensors/Short-Range-Radar-SRR320
- [12] „Long-range radar sensor", Bosch Mobility Solutions [Online]. Available: https://www.bosch-mobility-solutions.com/en/productsand-services/passenger-cars-and-light-commercial-vehicles/driverassistance-systems/left-turn-assist/long-range-radar-sensor/
- [13] „Mid-range radar sensor (MRR rear)", Bosch Mobility Solutions [Online]. Available: https://www.bosch-mobility-solutions.com/en/products-and-services/passenger-cars-and-light-commercialvehicles/driver-assistance-systems/lane-change-assist/mid-rangeradar-sensor-mrrrear/
- [14] „Speed Sensor Range (VBSSxx/VBSS100SL)", Racelogic Limited [Online]. Available: https://racelogic.support/01VBOX Automotive/02Speed Sensors/Single_and Dual_Antenna_Speed_Sensors
- [15] „BMA225, Digital, triaxial acceleration sensor", Bosch Sensortec [Online]. Available: https://ae-bst.resource.bosch.com/media/ tech/media/product yer/BST-BMA255-FL000.pdf
- [16] „SMB227, Low-g Accelerometer for Vehicle Dynamics Control", Bosch Sensortec [Online]. Available: https://www.arrow.com/it-it/datasheets/8958509520/bosch/smb227
- [17] „Capacitive MEMS, Single-Axis Accelerometer Type 8315A...", KISTLER Acceleration Sensor", Kistler Group, Switzerland [Online]. Available: http://www.helmar.com.pl/helmar/plik/pliki-produktow-kistler 8315 nn4910.pdf
- [18] R. Rajamani, Vehicle Dynamics and Control. Springer, 2012 (ISBN: 9781461414322).
- [19] M. Wang et al., „Delay-compensating strategy to enhance string stability of adaptive cruise controlled vehicles", Transportmetr. B: Transp. Dynam., vol. 6, no. 3, pp. 211-229, 2018 (DOI: 10.1080/21680566.2016.1266973).
- [20] F. A. Mullakkal-Babu, M. Wang, B. van Arem, and R. Happee, „Design and analysis of full range adaptive cruise control with integrated collision avoidance strategy", in Proc. IEEE 19th Int. Conf. on Intell. Transport. Syst. ITSC 2016, Rio de Janeiro, Brazil, 2016, pp. 308-315 (DOI: 10.1109/ITSC.2016.7795572).
- [21] T. Yucek and H. Arslan, „A survey of spectrum sensing algorithms for cognitive radio applications", IEEE Commun. Surv. Tutor., vol. 11, no. 1, pp. 116-130, 2009 (DOI: 10.1109/SURV.2009.090109).
- [22] J. Choi et al., „Millimeter-wave vehicular communication to suport massive automotive sensing", IEEE Commun. Mag., vol. 54, no. 12, pp. 160-167, 2016 (DOI: 10.1109/MCOM.2016.1600071CM).
- [23] J. Perez-Romero et al., „On the use of radio environment maps for interference management in heterogeneous networks", IEEE Commun. Mag., vol. 53, no. 8, pp. 184-191, 2015 (DOI: 10.1109/MCOM.2015.7180526).
- [24] S. Lien et al., „Latency-optimal mmWave radio access for V2X supporting next generation driving use cases", IEEE Access, vol. 7, pp. 6782-6795, 2019 (DOI: 10.1109/ACCESS.2018.2888868).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1e02aa55-5d0e-4c5e-802b-d78503b808c1