PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of rock geomechanical parameters on increased longwall absolute methane emission rate forecasting accuracy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In longwall absolute methane emission rate forecasting, the range of the destressing zone is determined empirically and is not considered to be dependent on the geomechanical parameters of the rock strata. This simplification regarding destressing zone determination may result in significant differences between the forecast and the actual methane emission rates. During the extraction of coal seams using a system involving longwalls with caving under the conditions of low rock mass geomechanical parameters, the absolute metha-ne emission rate forecasts are typically underestimated in comparison to the actual methane emission rates.In order to examine the influence of the destressing zones on the final forecasting result and to assess the influence of the rock mass geomechanical parameters on the increased accuracy of forecast values, destressing zones were determined for three longwalls with lengths ranging from 186 to 250 m, based on numerical modelling using the finite difference method (FDM). The modelling results confirmed the assumptions concerning the upper destressing zone range adopted for absolute methane emission rate forecasting. As for the remaining parameters, the destressing zones yielded great differences, particularly for floor strata. To inspect the accuracy of the FDM calculation result, an absolute methane emission rate forecasting algorithm was supplemented with the obtained zones. The prepared forecasts, both for longwall methane emission rates as well as the inflow of methane to the longwalls from strata within the destressing zone, were verified via underground methane emission tests. A comparative analysis found that including geomechanical parameters in methane emission rate forecasting can significantly reduce the errors in forecast values.
Rocznik
Strony
641--664
Opis fizyczny
Bibliogr. 14 poz., rys., tab., wykr.
Twórcy
  • Central Mining Institute, 1 Gwarków Sq., 40-166 Katowice, Poland
  • Central Mining Institute, 1 Gwarków Sq., 40-166 Katowice, Poland
Bibliografia
  • [1] Chinkulkijniwat A., Horpibulsuk S., Samprich S., 2015. Modeling of Coupled Mechanical–Hydrological Processes in Compressed-Air-Assisted Tunneling in Unconsolidated Sediments. May 2015 Transport in Porous Media 108 (1), 105-129.
  • [2] Cheng. J., Mei, J., Peng, S., Qi, C., Shi, Y., 2019a. Comprehensive Consultation Model for Explosion Risk in Mine Atmosphere-CCMER. Safety Science 120, 798-812.
  • [3] Cheng, J. Qi, C., Li, S.,2019b. Modelling Mine Gas Explosive Pattern in Underground Mine Gob and Overlying Strata. International Journal of Oil, Gas and Coal Technology 22 (4), 554-577.
  • [4] GIG Instruction No. 14, 2000. Dynamic longwall absolute methane emission rate forecasting. Instrukcja GIG nr 14, 2000. Dynamiczna prognoza metanowości bezwzględnej ścian. Poradnik techniczny, Seria instrukcje, GIG, Katowice.
  • [5] Itasca, 2008. User’s Guide FLAC2D. www.itascacg.com.
  • [6] Karacan C., Diamond WP., Esterhuizen GS., Schatzel SJ., 2005. Numerical Analysis of the Impact of Longwall Panel Width on Methane Emissions and Performance of Gob Gas Ventholes. Proceedings of the International Coalbed Methane Symposium, May 18-19, 2005, Tuscaloosa, AL: University of Alabama, 1-28.
  • [7] Koptoń H., 2015. Uwzględnienie własności sorpcyjnych węgla przy prognozowaniu metanowości bezwzględnej wyrobisk korytarzowych drążonych przy użyciu środków strzałowych.(Consideration of the sorption properties of coal when forecasting absolute methane bearing capacity of the roadway workings driven by using explosives) Przegląd Górniczy 5, 54-60.
  • [8] Kozłowski B., Grębski Z, 1982. Odmetanowanie górotworu w kopalniach. Wydawnictwo Śląsk, Katowice.
  • [9] Krause E. 2009. Prognozowanie wydzielania metanu do ścian przy urabianiu kombajnem. (Prediction of methane emis-sion into longwall workings at cutter-loader mining). Przegląd Górniczy 3, 35-40.
  • [10] Prassetyo S. H., Gutierrez M., 2014. A modeling approach in FLAC to predict hydro-mechanical response of subsurface storage reservoirs due to CO2 injection. Conference: 48th US Rock Mechanics / Geomechanics Symposium 2014 At: Minneapolis, Minnesota.
  • [11] Rajwa S., Janoszek T., Prusek S ., 2020. Model tests of the effect of active roof support on the working stability of a longwall. Computers and Geotechnics 118.
  • [12] Rajwa S., Janoszek T., Prusek S., 2019. Influence of canopy ratio of powered roof support on longwall working stability – A case study. International Journal of Mining Science and Technology 29 (4), 591-598.
  • [13] Whittles D.N., Lowndes I.S., Kingman S.W., Yates C., Jobling S., 2006. Influence of geotechnical factors on gas flow experienced in a UK longwall coal mine panel. International Journal of Rock Mechanics & Mining Sciences 43,369-387.
  • [14] Wierzbiński K., 2016. The use of CFD methods for predicting the three-dimensional field of methane concentration in the ventilation roadway – development and validation of numerical models 3D. Przegląd Górniczy 2, 44-55.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1e009345-f148-4ece-88db-055a37f00e16
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.