Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Influence of pH and Cellic® CTec2 enzymes dose on the glucose yield after enzymatic hydrolysis of cellulose at 45 °C. The enzymatic hydrolysis with the use of industrial enzymes Cellic® CTec2 (Novozymes, Denmark) was carried out within the conditions recommended by the manufacturer and literature. Cellulose obtained by the Kürschner-Hoffer method from a wood of 3-year-old poplar (Populus trichocarpa) was used for the study. Three pH values of 4.8, 5.0 and 5.5 were applied. Also, three amounts of enzymes were used: 25, 50 and 100 mg per 100 mg of the dry mass of cellulose for each pH used. The temperature was 45 °C. Samples were taken after 24 h and subjected to chromatographic analysis to determine the glucose content in the hydrolysates, and then the process parameters allowing for the highest glucose yield after the enzymatic hydrolysis process. The highest glucose yield was obtained for pH 5.0 and 100 mg of enzymes per 100 mg of the dry mass of cellulose – 79 %.
Wpływ pH i ilości enzymu Cellic® CTec2 na wydajnośc glukozy po hydrolizie enzymatycznej celulozy w 45 °C. Hydrolizę enzymatyczną z zastosowanie enzymów przemysłowych Cellic® CTec2 (Novozymes, Dania) przeprowadzono w warunkach zalecanych przez producenta i literaturę. Do badań wykorzystano celulozę otrzymaną metodą Kürschnera-Hoffera z drewna topoli trzyletniej Populus trichocarpa. Zastosowano trzy wartości pH: 4,8, 5,0 i 5,5. Zastosowano również trzy ilości enzymu: 25, 50 i 100 mg (na 100 mg suchej masy celulozy) dla każdego użytego pH. Temperatura wynosiła 45 °C. Próbki pobrano po 24 h i poddano analizie chromatograficznej w celu oznaczenia zawartości glukozy w hydrolizatach, a następnie parametrów procesu pozwalających na uzyskanie największej ilości glukozy po procesie hydrolizy enzymatycznej. Najwyższą wydajność glukozy uzyskano dla pH 5,0 i 100 mg enzymu na 100 mg suchej masy celulozy – 79 %.
Rocznik
Tom
Strony
85--91
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
autor
- Warsaw University of Life Sciences-SGGW, Department of Wood Science and Wood Preservation, Institute of Wood Sciences and Furniture, Poland
Bibliografia
- 1. AKHTAR N., AANCHAL, GOYAL D., GOYAL A., 2016: Biodiversity of cellulase producing bacteria and their applications. Cellulose Chemistry and Technology, 50, 983-95.
- 2. ALVIRA P., TOMAS-PEJO E., BALLESTEROS M., NEGRO M.J., 2010: Pretreatment technologiesfor an efficient bioethanol production process based on enzymatic hydrolysis. Bioresource Technology 101, 4851–61.
- 3. ASEM H.M., 2012: Conversion of lignocellulosic material into fermentable sugars. der Technischen Universität Berlin, PhD dissertation.
- 4. CANNELLA D., CHIA-WEN C. H., FELBY C., JØRGENSEN H., 2012: Production and effect of aldonic acids during enzymatic hydrolysis of lignocellulose at high dry matter content, Biotechnology for Biofuels., 5, 1, 26.
- 5. FAN L.T., LEE Y.H., BEARDMORE D., 1981: The influence of major structural features of cellulose on rate of enzymatic hydrolysis. Biotechnol. Bioeng., 23, 419-24.
- 6. GAO J., ANDERSON D., LEVIE B., 2013: Saccharification of recalcitrant biomass and integration options for lignocellulosic sugars from Catchlight Energy’s sugar process (CLE Sugar). Biotechnology for Biofuels, 6, 1, 1.
- 7. HEIKINHEIMO L., 2002: Trichoderma reesei cellulases in processing of cotton. Espoo 2002, VTT Publications 483, VTT Technical Research Centre of Finland, za: Balata M., Balata H., Cahide O., 2008: Progress in bioethanol processing, Progress in Energy and Combustion. Science, 4, 551–73.
- 8. HIMMEL M.E., DING S.-Y., JOHNSON D.K., ADNEY W.S., NIMLOS M.R., BRADY J.W., FOUST T.D., 2007: Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science, 315, 804–7.
- 9. HOWARD R.L., ABOTSI E., VAN RENSBURG E.L.J., HOWARD S., 2003: Lignocellulose biotechnology: issues of bioconversion and enzymes production. Afr. J. Biotechnol., 2, 602–19.
- 10. KÜRSCHNER K., HOFFER A., 1929: Ein neues Verfahren zur Bestimmung der Cellulose in Hölzern und Zellstoffen. Technol. Chem. Papier Zellstoff. Fabr., 26, 125–9.
- 11. LAN Q., LOU H., ZHU J. Y., 2013: Enzymatic Saccharification of Lignocelluloses Should be Conducted at Elevated pH 5.2–6.2, BioEnergy Research, 6, 2, 476–85.
- 12. MOOD S.H., GOLFESHAN A.H., TABATABAEI M., JOUZANI G.S., NAJAFI G.H., GHOLAMI M., ARDJMAND M., 2013: Renewable Sustainable Energy Rev., 27, 77–991.
- 13. NOVOZYMES, 2010: APPLICATION SHEET, Cellic® CTec2 and HTec2 – enzymes for hydrolysis of lignocellulosic materials.
- 14. OYEKOLA O.O., 2004: The enzymology of sludge solubilisation under biosulphidogenic conditions: isolation, characterisation and partial purification of endoglucanases. Masters thesis, Rhodes University, Grahamstown, South Africa, za: Balata M., Balata H., Cahide O., 2008: Progress in bioethanol processing, Progress in Energy and Combustion. Science, 34, 551–73.
- 15. PAN X., GILKES N., SADDLER J.N., 2006: Effect of acetyl groups on enzymatic hydrolysis of cellulosic substrates. Holzforschung,60, 398–401.
- 16. SÁNCHEZ O.J., CARDONA C.A., 2008: Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour. Technol., 99, 13, 5270-95.
- 17. THOMPSON D.N., CHEN H., GRETHLEIN H., 1992: Comparison of pretreatment methods on the basis of available surface area. Biores. Technol., 39, 155-63.
- 18. ZHANG Y.H.P., LYND L.R., 2004: Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol. Bioeng., 88,797–824.
- 19. ZHANG Y.H.P., LYND L.R., 2004: Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol. Bioeng., 88,797–824.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1dfa4a19-102b-4ddd-a5be-6446f7b4c529