Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The ability of magnetic nanoparticles and their aggregates to form larger structures or new materials is primarily based on the interactions between individual particles. The article analyzes the behavior of spherical nanoparticles Fe3O4 placed in an aqueous base solution as a result of their mutual interactions, i.e. repulsive (electrostatic forces) and attractive (van der Waals forces and dipolar magnetic forces) for the full range of parameter values. Considering the application of magnetic aqueous suspensions in industry or environmental research, the presented method allows for a preliminary selection of the parameters of the dispersed material and the solution so as to obtain a suspension with the desired properties.
Rocznik
Tom
Strony
98--106
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
autor
- Institute of Physics, University of Zielona Góra, Zielona Góra, Poland
autor
- Institute of Physics, University of Zielona Góra, Zielona Góra, Poland
autor
- Institute of Physics, University of Zielona Góra, Zielona Góra, Poland
autor
- Institute of Physics, University of Zielona Góra, Zielona Góra, Poland
Bibliografia
- [1] Heimenz, P.C. (1986). Principles of Colloid and Surface Chemistry. New York: M. Dekker.
- [2] Pankhurst, Q.A., Connolly, J., Jones S.K., & Dobson J. (2003). Applications of magnetic nanoparticles in biomedicine. Journal of Physics D: Applied Physics, 36, R167-R181.
- [3] Trisnanto, S.B., Yasuda, K., & Kitamoto Y. (2018). Dipolar magnetism and electrostatic repulsion of colloidal interacting nanoparticle system. Japanese Journal of Applied Physics, 57, 02CC06.
- [4] Wu. K., Su, D., Liu, J., Saha, R., & Wang, J.-P. (2019). Magnetic nanoparticles in nanomedicine: a review of recent advances. Nanotechnology, 30, 502003.
- [5] Nourafkan, E., Asachi, M., Gao, H., Razaa, G., & Wen, D. (2017). Synthesis of stable iron oxide nanoparticle dispersions in high ionic media. Journal of Industrial and Engineering Chemistry, 50, 57-71.
- [6] Derjaguin, B., & Landau, L. (1941). Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solution of electrolytes. Acta Physicochim. URSS, 14, 633-662.
- [7] Verwey, E., & Overbeek, J.T.G. (1949). Theory of Stability of Lyophobic Colloids. Elsevier.
- [8] Wang, H., Zhao, X., Han, X., Tang, Z., Liu, S., Guo, W., Deng, C., Guo, Q., Wang, H., Wu, F., Meng, X., & Giesy, J.P. (2017). Effects of monovalent and divalent metal cations on the aggregation and suspension of Fe3O4 magnetic nanoparticles in aqueous solution. Science of the Total Environment, 586, 817-826.
- [9] Chekli, L., Phuntsho, S., Roy, M., Lombi, E., Donner, E., & Shon, H.K. (2013). Assessing the aggregation behaviour of iron oxide nanoparticles under relevant environmental conditions using a multi-method approach. Water Research, 47, 4585-4599.
- [10] Prakash, S., Pinti, M., & Bhushan, B. (2012). Theory, fabrication and applications of microfluidic and nanofluidic biosensors. Philosophical Transactions A, 370, 2269-2303.
- [11] London, F. (1937). The general theory of molecular forces. Trans. Faraday Soc., 33, 8b 26.
- [12] Israelachvili, J.N. (1974). The nature of van der waals forces. Contemporary Physics, 15, 159-178.
- [13] Hamaker, H.C. (1937). The London-van der Waals attraction between spherical particles. Physica, 4, 1058-1072.
- [14] Rappe, A.K., Casewit, C.J., Colwell, K.S., Goddard III, W.A., & Skiff, W.M. (1992). UFF, a full periodic table force field for molecular mechanics and dynamics simulations. Journal of the American Chemical Society, 114, 10024-10035.
- [15] Henderson, D., Duh, D-M., Chu, X., & Wasan D. (1997). An expression for the dispersion force between colloidal particles. Journal of Colloid and Interface Science, 185, 265-268.
- [16] Tang, S.C.N., & Lo, I.M.C. (2013). Magnetic nanoparticles: Essential factors for sustainable environmental applications. Water Research, 47, 613-632.
- [17] Al Harraq, A., Hymel, A.A., Lin, E., Truskett, T.M., & Bharti, B. (2022). Dual nature of magnetic nanoparticle dispersions enables control over short-range attraction and long-range repulsion interactions. Communications Chemistry, 5, 1-9.
- [18] Edwards, B.F., Riffe, D.M., Ji, J.-Y., & Booth, W.A. (2017). Interactions between uniformly magnetized spheres. American Journal of Physics, 85, 130-134.
- [19] Chakraborty, S., & Panigrahi, P.K. (2020). Stability of nanofluid: A review. Applied Thermal Engineering, 174, 115259.
- [20] Dudek, K., Marć, M., Wolak, W., Drzewiński, A., & Dudek, M.R. (2021). Theoretical concept describing a use of magnetic nanoparticles in a thin elastic film for the detection of mechanical deformation. Physica Status Solidi B-Basic Research, 258, 1-8.
- [21] Khizar, S., Ahmad, N.M., Zine, N., Jaffrezic-Renault, N., Errachid-el-salhi, A., & Elaissari, A. (2021). Magnetic nanoparticles: From synthesis to theranostic applications. ACS Applied Nano Materials, 4, 4284-4306.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1df97f5a-9228-45c4-b889-68ecbbbc4316