PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

UV-Vis studies of 800 keV Ar ion irradiated NiO thin films

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We report the evolution of optical absorption properties of 800 keV Ar ion irradiated NiO thin films through UV-Vis characterization. Our results indicate the existence of both Mott-Hubbard (d → d transition) and charge-transfer (p ! d transition) characteristic of NiO. The optical band gap of NiO increases from 3.58 to 3.75 eV when irradiated at the fluence of 5 x 1014 ions cm-2 but it does not show any remarkable variation upon 800 keV Ar ion irradiation at higher fluences. The refractive index and electron polarizability at different ion fluences have been determined from the optical band gap. Both refractive index and electron polarizability follow an opposite trend to that of the energy gap as a function of ion fluence.
Wydawca
Rocznik
Strony
555--559
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
  • Department of Physics, North Orissa University, Baripada 757003, Odisha, India
autor
  • Department of Physics, Institute of Technical Education and Research, Siksha ’O’ Anusandhan University, Khandagiri Square, Bhubaneswar 751030, Odisha, India
  • Department of Physics, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1710, South Africa
autor
  • Inter-University Accelerator Center, Aruna Asaf Ali Marg, P.O. Box 10502, New Delhi 110067, Utter Pradesh, India
autor
  • Inter-University Accelerator Center, Aruna Asaf Ali Marg, P.O. Box 10502, New Delhi 110067, Utter Pradesh, India
Bibliografia
  • [1] ZHAI P., YI Q., JIAN J., WANG H., SONG P., DONG C., LU X., SUN Y., ZHAO J., DAI X., LOU Y., YANG H., ZOU G., Chem. Commun., 50 (2014), 1854.
  • [2] AL-KAHLOUT A., PAWLICKA A., AEGERTER M., Sol. Energy Mater. Sol. C, 90 (2006), 3583.
  • [3] LOU XC, ZHAO XJ, HE X, Sol. Energy, 83 (2009), 2103.
  • [4] IRWIN M.D., BUCHHOLZ D.B., HAINS A.W., CHANG R.P.H., MARKS T.J., Proc. Natl. Acad. Sci. USA, 105 (2008), 2783.
  • [5] STEINEBACH H, KANNAN S, RIETH L, SOLZBACHER F, Sensor. Actuat. B Chem., 151 (2010), 162.
  • [6] TSAI S.-Y., HON M.-H., LU Y.-M., Solid-State Electron., 63 (2011), 37.
  • [7] LEE Y.-M., YANG H.-W., HUANG C.-M, J. Phys. D Appl. Phys., 45 (2012), 225302.
  • [8] MALLICK P., AGARWAL D.C., RATH CHANDANA, BISWAL R., BEHERA D., AVASTHI D.K., KANJILAL D., SATYAM P.V., MISHRA N.C., Nucl. Instrum. Meth. B, 266 (2008), 3332.
  • [9] MALLICK P., RATH CHANDANA, PRAKASH JAI, MISHRA D.K., CHOUDHARY R.J., PHASE D.M., TRIPATHI A., AVASTHI D.K., KANJILAL D., MISHRA N.C., Nucl. Instrum. Meth. B, 268 (2010), 1613.
  • [10] MALLICK P., DASH B.N., SOLANKI V., VARMA S., MISHRA N.C., Adv. Sci. Eng. Med., 6 (10) (2014), 1118.
  • [11] REGUIG B.A., KHELIL A., CATTIN L., MORSLI M., BERNEDE J.C., Appl. Surf. Sci., 253 (2007), 4330.
  • [12] CHEN H.L., LU Y.M., HWANG W.S., Surf. Coat. Technol., 198 (2005), 138.
  • [13] MOHANTY P., RATH CHANDANA, MALLICK P., BISWAL R., MISHRA N.C., Physica B, 405 (2010), 2711.
  • [14] AHMAD S., ASHRAF M., AHMAD A., SINGH D.V., Arab. J. Sci. Eng., 38 (2013), 1889.
  • [15] MALLICK P., MISHRA D.K., KUMAR P., KANJILAL D., Indian J. Phys., 88 (7) (2014), 691.
  • [16] KUMAR P., RODRIGUES G., RAO U.K., SAFVAN C.P., KANJILAL D., ROY A., Pramana, 59 (2002), 805.
  • [17] MOTT N.F., DAVIES E.A., Electronic Processes in Non-Crystalline Materials, Clarendon Press, Oxford, 1979.
  • [18] BANERJEE A.N., CHATTOPADHYAY K.K., Reactive SputteredWide-Bandgap p-Type Semiconducting Spinel AB, in: DEPLA D., MAHEIU S. (Eds.), Reactive Sputter Deposition, Springer-Verlag, Berlin Heidelberg, 2008, p. 413.
  • [19] LI X, ZHANG X, LI Z, QIAN Y, Solid State Commun., 137 (2006), 581.
  • [20] POWELL R.J., SPICER W.E., Phys. Rev. B, 2 (1970), 2182.
  • [21] KUIPER P., KRUIZINGA G., GHIJSEN J., SAWATZKY G.A., VERWEIJ H., Phys. Rev. Lett., 2 (1989), 221.
  • [22] HUFNER S., STEINER P., REINERT F., SCHMITT H., SANDL P., Z. Phys. B, 88 (1992), 247.
  • [23] MACKRODT W.C., NOGUERA C., Surf. Sci., 457 (2000), L386.
  • [24] KUMAR V., SINGH J.K., Ind. J. Pure Appl. Phys., 48 (2010), 571.
  • [25] FREITAG A., STAEMMLER V., CAPPUS D., VENTRICE C.A., AL SHAMERY K., KUHLENBECK H., FREUND H.-J., Chem. Phys. Lett., 210 (1993), 10.
  • [26] NEWMAN R., CHRENKO R.M., Phys. Rev., 114 (1959), 1507.
  • [27] PROPACH V., REINEN D., DRENKHALN H., BUSCHBAUM H. MULLER, Z. Naturforsch., 33b (1978) 619.
  • [28] COX P.A., WILLIAMS A.A., Surf. Sci., 152 (1985), 791.
  • [29] FROMME B., SCHMITT M., KISKER E., GORSCHLU¨TER A., MERZ H., Phys. Rev. B, 50 (1994), 1874.
  • [30] GRAAF C. DE, BROER R., NIEUWPOORT W.C., Chem. Phys., 208 (1996), 35.
  • [31] SATITKOVITCHAI K., PAVLYUKH Y., HU¨BNER W., Phys. Rev. B, 67 (2003), 165413.
  • [32] GELEIJNS M., GRAAF C. DE, BROER R., NIEUWPOORT W.C., Surf. Sci., 421 (1999), 106.
  • [33] MACKRODT W.C., NOGUERA C., ALLAN N.L., Faraday Discuss., 114 (1999), 105.
  • [34] FROMME B., M¨O LLER M., ANSCHU¨TZ TH., BETHKE C., KISKER E., Phys. Rev. Lett., 77 (1996), 1548.
  • [35] XU C., OH W.S., GUO Q., GOODMAN D.W., J. Vac. Sci. Technol. A, 14 (1996), 1395.
  • [36] GUO Q., XU C., GOODMAN D.W., Langmuir, 14 (1998), 1371.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1df75981-01b4-450c-b33e-99bb3a7d24c1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.