Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents the design of a compact frontend diplexer for radio-astronomy applications based on a self complementary Bow-tie antenna, a 3 dB T-junction splitter and two pass-band fractal lters. The whole diplexer structure has been optimized by using an evolutionary algorithm. In particular the problem of the diplexer design is recast into an optimization one by dening a suitable cost function which is then minimized by mean of an evolutionary algorithm namely the Particle Swarm Optimization (PSO). An X band diplexer prototype was fabricated and assessed demonstrating a good agreement between numerical and experimental results.
Rocznik
Tom
Strony
113--118
Opis fizyczny
Bibliogr. 35 poz., rys.
Twórcy
autor
- Department of Information Engineering, and Computer Science, University of Trento, Trento, Italy
autor
- IMEP-LAHC CNRS UMR5130, University of Savoie, Le Bourget du Lac, France
Bibliografia
- [1] T. Orlando and K. Delin, Foundation of Applied Superconductivity. Addison Wesley, 1991.
- [2] W. M. Chang, "The inductance of a superconducting strip transmission line", J. Appl. Phys., vol. 50, no. 12, pp. 8129-8134, 1979.
- [3] P. Febvre, C. Boutez, S. George, and G. Beaudin, "Models of superconducting microstrip and coplanar elements for submillimeter applications", in Proc. Int. Conf. 2nd Millimeter Submillimeter Waves Appl., San Diego, CA, USA, 1995, SPIE vol. 2558, pp. 136-147.
- [4] D. Rauly, A. Monfardini, A. Colin, and P. Febvre, "Design of twoband 150-220 GHz superconducting bolometric detection structure", PIERS Online, vol. 4, no. 6, pp. 671-675, 2008.
- [5] Y. Mushiake, Self-Complementary Antennas: Principle of Self-Complementarity for Constant Impedance. London: Springer, 1996.
- [6] R. Azaro et al., "Design of miniaturized ISM-band fractal antenna", Electron. Lett., vol. 41, no. 14, pp. 785-786, 2005.
- [7] K. Kwon et al., "Fractal-shaped microstrip coupled-line bandpass filters for suppression of second harmonic", IEEE Trans. Microw. Theory Techniq., vol. 53, no. 9, pp. 2943-2948, 2005.
- [8] D. Pozar, Microwave Engineering. New York: Wiley, 1998.
- [9] S. Kumar, C. Tannous, and T. Danshin, "A multisection broadband impedance transforming branch-line hybrid", IEEE Trans. Microw. Theory Techniq., vol. 43, no. 11, pp. 2517-2523, 1995.
- [10] K. Wincza, and S. Gruszczynski, "Miniaturized quasi-lunped coupled-line single section and multisection directional couplers", IEEE Trans. Microw. Theory Techniqu., vol. 48, no. 11, pp. 2924-2931, 2010.
- [11] Y. C. Chiang, and C. Y. Chen, "Design of a wideband lumpedelement 3 dB quadrature coupler", IEEE Trans. Microw. Theory Techniq., vol. 9, pp. 476-479, 2001.
- [12] S. Caorsi, M. Donelli, A. Massa, and M. Raffetto, "A parallel implementation of an evolutionary-based automatic tool for microwave circuit synthesis: preliminary results", Microw. Optical Technol. Lett., vol. 35, no. 3, 2002.
- [13] R. Azaro, F. De Natale, M. Donelli, and A. Massa, "PSO-based optimization of matching loads for lossy transmission lines", Microwave and Optical Technology Letters, vol. 48, no. 8, pp. 1485-1487, 2006.
- [14] M. Donelli, R. Azaro, A. Massa, and M. Raffetto, "Unsupervised synthesis of microwave components by means of an evolutionary based tool exploiting distributed computing resources", Progr. Electromag. Res., vol. 56, pp. 93-108, 2006.
- [15] J. Robinson, S. Sinton, and Y. Rahmat-Samii, "Particle swarm, genetic algorithm, and their hybrids: Optimization of a profiled corrugated horn antenna", in Proc. IEEE Antenn. Propagat. Soc. Int. Symposium, San Antonio, TX, USA, 2002, vol. 1, pp. 314-31.
- [16] D. Boeringer and D. Werner, "Efficiency-constrained particle swarm optimization of a modified bernstein polynomial for conformal array excitation amplitude synthesis", IEEE Trans. Antenn. Propagat., vol. 53, no. 8, 2005.
- [17] M. Donelli and A. Massa, "A computational approach based on a particle swarm optimizer for microwave imaging of two-dimensional dielectric scatterers", IEEE Trans. Microw. Theory Techniq., vol. 53, no. 5, pp. 1761-1776, 2005.
- [18] R. Azaro, M. Donelli, M. Benedetti, P. Rocca, and A. Massa, "A GSM signals based positioning technique for mobile applications", Microw. Optical Technol. Lett., vol. 50, no 4, pp. 2128-2130, 2008.
- [19] J. Robinson and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics", IEEE Trans. Antenn. Propagat., vol. 52, no. 2, pp. 397-407, 2004.
- [20] J. Kennedy, R. C. Eberhart, and Y. Shi, Swarm Intelligence. San Francisco: Morgan Kaufmann, 2001.
- [21] M. Clerc and J. Kennedy, "The particle swarm explosion, stability, and convergence in a multidimensional complex space", IEEE Trans. Evolut. Comput., vol. 6, no. 1, pp. 58-73, 2002.
- [22] M. Donelli, R. Azaro, F. De Natale, and A. Massa, "An innovative computational approach based on a particle swarm strategy for adaptive phased-arrays control", IEEE Trans. Antenn. Propagat., vol. 54, no. 3, pp. 888-898, 2006.
- [23] J. Robinson and R. Saami, "Particle swarm optimization in electromagnetics', IEEE Trans. Antennas Propagat., vol. 52, no. 2, pp. 397-407, 2004.
- [24] M. Donelli and P. Febvre, "An inexpensive reconfigurable planar array for Wi-Fi applications", Progr. Electromag. Res. C, vol. 28, pp. 71-81, 2012.
- [25] R. Azaro, M. Donelli, D. Franceschini, E. Zeni, and A. Massa, "Optimized synthesis of a miniaturized SARSAT band prefractal antenna". Microw. Optical Technol. Lett., vol. 48, no. 11, pp. 2205-2207, 2006.
- [26] R. Azaro, G. Boato, M. Donelli, A. Massa, and E. Zeni, "Design of a prefractal monopolar antenna for 3.4-3.6 GHz Wi-MAX band portable devices", IEEE Antenn. Wirel. Propagat. Lett., vol. 5, no. 1, pp. 116-119, 2006.
- [27] R. Azaro, F. De Natale, E. Zeni, M. Donelli, and A. Massa, "Synthesis of a pre-fractal dual-band monopolar antenna for GPS applications", IEEE Antenn. Wirel. Propagat. Lett., vol. 5, no. 1, pp. 361-364, 2006.
- [28] L. Fimognari, M. Donelli, A. Massa, and R. Azaro, "A planar electronically reconfigurable wi-fi band antenna based on a parasitic microstrip structure, IEEE Antenn. Wirel. Propagat. Lett., vol. 6, pp. 623-626, 2007.
- [29] M. Donelli, Md Rukanuzzaman, and C. Saavedra, "Design and Optimization of a broadband X-band bidirectional", Microw. Optical Technol. Lett., vol. 55, no. 8, p. 1730-1735, 2013.
- [30] A. Massa, D. Franceschini, G. Franceschini, M. Pastorino, M. Raffetto, and M. Donelli, "Parallel GA-based approach for microwave imaging applications", IEEE Trans. Antenn. Propagat., vol. 53, no. 10, pp. 3118-3127, 2005.
- [31] M. Donelli, R. Azaro, A. Massa, and M. Raffetto, "Unsupervised synthesis of microwave components by means of an evolutionarybased tool exploiting distributed computing resources". Progr. Electromag. Res., vol. 56, pp. 93-108, 2006.
- [32] M. Donelli, A. Martini, and A. Massa, "A hybrid approach based on PSO and Hadamard difference sets for the synthesis of square thinned arrays, IEEE Trans. Antenn. Propagat. Lett., vol. 57, no. 8, pp. 2491-2495, 2009.
- [33] M. Donelli and P. Febvre, "An inexpensive reconfigurable planar array for Wi-Fi applications", Progr. Electromag. Res. C, vol. 28, pp. 71-81, 2012.
- [34] P. Rocca, M. Donelli, A. Massa, F. Viani, and G. Oliveri, "Reconfigurable sum-difference pattern by means of parasitic elements for forward-looking monopulse radar", IET Radar, Sonar & Navig., vol. 7, no. 7, pp. 747-754, 2013.
- [35] M. Donelli, Md Rukanuzzaman, and C. Saavedra, "A methodology for the design of microwave systems and Circuits using an evolutionary algorithm", Progr. Electromag. Res. Lett., vol. 31, pp. 129-141, 2013.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1df72acb-a54c-4a03-af1b-7f09e86dd25d