PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental determination and numerical simulation of material and damage behaviour of 3D printed polyamide 12 under quasi-static loading

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Solid Mechanics Conference (SolMech 2018) (41 ; 27–31.08. 2018 ; Warsaw, Poland)
Języki publikacji
EN
Abstrakty
EN
In order to characterise the material and damage behaviour of additively manufactured polyamide 12 (PA12) under quasi-static load and to implement it in a numerical model, experiments under quasi-static load as well as microstructural investigations were carried out. Selective laser sintering (SLS) was used as the manufacturing process. For the classification of the material behaviour, quasi-static cyclic tests with holding times as well as tensile tests were performed. X-ray refraction and computed tomography (CT) were used to investigate the damage behaviour. The Chaboche model, which has already been applied for metallic materials under thermomechanical loading, served as the basis for the selection of the numerical material model. The same procedure was used for the selection of the damage model, where the Gurson–Tvergaard–Needleman (GTN) model was chosen, which was already used for porous metallic materials. The Chaboche model shows very good agreement with experimental results. Furthermore, the coupling with the GTN model allows a very good modelling of the damage behaviour. Finally, it could be shown that the selected models are suitable to simulate the material and damage behaviour of 3D printed PA12.
Rocznik
Strony
507--526
Opis fizyczny
Bibliogr. 28 poz., rys. kolor.
Twórcy
autor
  • Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
autor
  • Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
  • Poznan University of Technology, 60-965 Poznan, Poland
autor
  • Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
autor
  • Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
  • Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
autor
  • BAM, Bundesanstalt für Materialforschung und -prüfung, 12200 Berlin, Germany
autor
  • BAM, Bundesanstalt für Materialforschung und -prüfung, 12200 Berlin, Germany
  • BAM, Bundesanstalt für Materialforschung und -prüfung, 12200 Berlin, Germany
autor
  • BAM, Bundesanstalt für Materialforschung und -prüfung, 12200 Berlin, Germany
Bibliografia
  • 1. J.R. Dizon, A.H. Espera, Q.Chien, R.C. Advincula, Mechanical characterization of 3d-printed polymers, Additive Manufacturing, 20, 44–67, 2018.
  • 2. A. M. Forster, Materials Testing Standards for Additive Manufacturing of Polymer Materials, Additive Manufacturing, 2015.
  • 3. C. Landron, E. Maire, O. Bouaziz, J. Adrien, L. Lecarme, A. Bareggi, Validation of void growth models using x-ray microtomography characterization of damage in dual phase steels, Acta Materialia, 59, 7564–7573, 2011.
  • 4. Ch. Angermeier A.M. Horr, An innovative use of ct method in light metals development, ICT Conference Proceedings, Acta Materialia, 149–157, 2014.
  • 5. G. Ziółkowski, E. Chlebus, P. Szymczyk, J. Kurzac, Application of x-ray ct method for discontinuity and porosity detection in 316l stainless steel parts produced with slm technology, Archives of Civil and Mechanical Engineering, 14, 4, 608–614, 2014.
  • 6. DIN Deutsches Institut für Normung e.V., DIN EN ISO 527-2: Kunststoffe – Bestimmung der Zugeigenschaften, Teil 2: Prüfbedingungen für Form- und Extrusionsmassen, 2012.
  • 7. P. Haupt, Continuum Mechanics and Theory of Materials, Springer, Berlin, Heidelberg, 2002.
  • 8. M.P. Hentschel, R. Hosemann, A. Lange, B. Uther, R. Brückner, Röntgen-kleinwinkelbrechung an Metalldrähten, Glasfäden und hartelastischem Polypropylen, Acta Crystallographica, A 43, 506–513, 1987.
  • 9. M.P. Hentschel, K.-W. Harbich, D. Ekenhorst, J. Schors, Röntgentopographie der Faser- und Polymerorientierung. Materialprüfung, 39, 121–123, 1997.
  • 10. A. Kupsch, A. Lange, M.P. Hentschel, Y. Onel, T. Wolk, A. Staude, K. Ehrig, B.R. Müller, G. Bruno, Evaluating porosity in cordierite-based diesel particulate filter materials. Part 1. X-ray refraction, Journal of Ceramic Science and Technology, 4, 169–176, 2013.
  • 11. A. Kupsch, B.R. Müller, A. Lange, G. Bruno, Microstructure characterization of ceramics via 2d and 3d x-ray refraction techniques, Journal of the European Ceramic Society, 37, 1879–1889, 2017.
  • 12. B.R. Müller, R.C. Cooper, A. Lange, A. Kupsch, M. Wheeler, M.P. Hentschel, A. Staude, A. Pandey, A. Shyam, G. Bruno, Stress-induced microcrack den-eucryptite ceramics: experimental observations and possible route to strain hardening, Acta Materialia, 144, 627–641, 2018.
  • 13. S. Evsevleev, B.R. Müller, A. Lange, A. Kupsch, Refraction driven x-ray caustics at curved interfaces, Nuclear Instruments and Methods in Physics Research, A 916, 275–282, 2019.
  • 14. F.E. Fensch-Kleemann, K.W. Harbich, M.P. Hentschel, Microstructural characterisation of porous ceramics by x-ray refraction topography, 79, 11, 35–38, 2002.
  • 15. O. Brunke, Industrial x-ray ct: Quality control from the lab to the production floor, Quality Magazine, 2015.
  • 16. Thermo Fischer Scientific. Thermo fischer scientific avizo software (version 9.4).
  • 17. N. Otsu, A thresholding selection method from grayscale histogram, IEEE Transactions on Systems, Man, and Cybernetics, 9, 1, 62–66, 1979.
  • 18. J.-L. Chaboche, Constitutive equations for cyclic plasticity and cyclic viscoplasticity, International Journal of Plasticity, 5, 3, 247–302, 1989.
  • 19. O. S. Hopperstad, M. Langseth, S. Remseth, Cyclic stress-strain behaviour fo alloy aa6060, part I: Uniaxial experiments and modelling, International Journal of Plasticity, 11, 725–739, 1995.
  • 20. R. Franke, D. Schob, M. Ziegenhorn, Additive Fertigung von Bauteilen und Strukturen: Prüfverfahren und numerische Simulation von mechanischen Eigenschaften 3D-gedruckter thermoplastischer Kunststoffe, H.A. Richard, B. Schramm and T. Zipsner (Hrsg): Additive Fertigung von Bauteilen und Strukturen, Springer, Wiesbaden, 137–158, 2017.
  • 21. S. Dupin, O. Lame, C. Barres, J.-Y. Charmeau, Microstructural origin of physical and mechanical properties of polyamide 12 processed by laser sintering, European Polymer Journal, 48, 9, 1611–1621, 2012.
  • 22. W. Grellmann S. Seidler, Kunststoffprüfung, Carl Hanser Verlag München, 3, 146, 2015.
  • 23. M. Metzger, B. Nieweg, C. Schweizer, T. Seifert, Lifetime prediction of cast iron materials under combined thermomechanical fatigue and high cycle fatigue loading using a mechanism-based model, International Journal of Fatigue, 53, 58–66, 2013.
  • 24. University of Technology Brno. Fitting tool hyperfit.
  • 25. V. Tvergaard, A. Needleman, Analysis of the cup cone fracture in a round tensile bar, Acta Metallurgica, 32, 1, 1984.
  • 26. A.L. Gurson, Continuum theory of ductile rupture by void nucleation and growth-i. yield criteria and flow rules for porous ductile media, Journal of Engineering Materials and Technology, 1982, 18, 1982.
  • 27. A. Pawlak, A. Gałęski, Cavitation during tensile drawing of semicristalline polymers, Polymery, 9, 627–636, 2011.
  • 28. S.R. Bodner, I. Partom, Y. Partom, Uniaxial cyclic loading of elastic-viscoplastic materials, Journal of Applied Mechanics, 46, 4, 805–810, 1979.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1df66ff8-9630-409f-9cd7-8777e3245e2f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.