PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessing the impact of land cover and land use change on urban infrastructure resilience in Abuja, Nigeria: a case study from 2017 to 2022

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ocena wpływu zmian pokrycia i użytkowania gruntów na odporność infrastruktury miejskiej w stolicy Nigerii, Abudży: studium przypadku z lat 2017-2022
Języki publikacji
EN
Abstrakty
EN
The remarkable feature of rapid urbanisation, which has fundamentally altered the distribution of land cover and land use (LULC), is what sets the contemporary era apart. The impact of these modifications on the resilience of Abuja’s metropolitan infrastructure from 2017 to 2022 is examined in this study. Our study examined the dynamic changes in LULC using information from remote sensing, geospatial analysis software, and land cover categorization techniques. The findings indicate major changes in Abuja’s topography, including a decrease in the number of water bodies, a decrease in the number of trees, the expansion of urban areas, changes in agricultural land use, and fluctuations in the amount of grazing land. The previously mentioned changes have significant consequences for urban infrastructure resilience, affecting various sectors such as water supply, transportation, housing, utilities, and food distribution systems. The infrastructure supporting water supply and sanitation may be severely stretched as the number of water bodies decreases, affecting the quantity and quality of accessible water supplies. As metropolitan areas expand, greater strain is placed on transportation infrastructure, exacerbating traffic congestion and complicating road maintenance difficulties. Changes in agricultural land use can have an impact on food production and distribution, hence affecting food security. Deforestation can cause ecological deterioration, affecting a variety of aspects such as temperature regulation, biological diversity, and atmospheric purity. Adaptive approaches, green infrastructure, and adopting sustainable urban design can all strengthen the resilience of urban infrastructure, according to this study. The significance of renewable energy adoption, community participation, green building laws, the establishment of public-private partnerships, integrated water resource management, and data-driven decision-making is emphasised. Improving legal frameworks that prioritise resilience and sustainability is critical. It is critical to have a complete grasp of the complicated links between changes in LULC, and the resilience of urban infrastructure in order to enable educated urban design and decision-making processes. Policymakers and urban planners may address and minimise the negative consequences of climate change while improving the overall quality of life in cities by using sustainable development practises. The findings of this study have the potential to dramatically improve Abuja’s people’s well-being and sustainability, especially given the variety of urban difficulties they encounter.
PL
Współczesną erę wyróżnia niezwykle szybka urbanizacja, która zasadniczo zmieniła rozkład pokrycia terenu i użytkowa- nia gruntów (LULC). W niniejszym badaniu przeanalizowano wpływ tych zmian na odporność infrastruktury metropo- litalnej Abudży w latach 2017-2022. Dynamiczne zmiany LULC zbadano przy użyciu informacji z teledetekcji, oprogra- mowania do analizy geoprzestrzennej oraz technik kategoryzacji pokrycia terenu. Wyniki wskazują na poważne zmiany w topografii Abudży, w tym spadek liczby zbiorników wodnych, spadek liczby drzew, ekspansję obszarów miejskich, zmiany w użytkowaniu gruntów rolnych i wahania w ilości pastwisk. Zmiany te mają znaczące konsekwencje dla od- porności infrastruktury miejskiej, wpływając na różne sektory, takie jak zaopatrzenie w wodę, transport, mieszkalnic- two, usługi komunalne i systemy dystrybucji żywności. Infrastruktura wspierająca zaopatrzenie w wodę i urządzenia sanitarne może być poważnie obciążona, ponieważ malejąca liczba zbiorników wodnych odbija się na ilości i jakości dostępnych zasobów wody. Wraz z rozwojem obszarów metropolitalnych rośnie obciążenie infrastruktury transportowej, co zwiększa natężenie ruchu i komplikuje utrzymanie dróg. Zmiany w użytkowaniu gruntów rolnych wpływają na pro- dukcję i dystrybucję żywności, a tym samym na bezpieczeństwo żywnościowe. Wylesianie może powodować pogorszenie stanu środowiska, wpływając na regulację temperatury, różnorodność biologiczną i czystość atmosfery. Według naszych badań podejście adaptacyjne, zielona infrastruktura i przyjęcie zrównoważonego projektowania urbanistycznego mogą wzmocnić odporność infrastruktury miejskiej. Podkreśla się znaczenie energii odnawialnej, udziału społeczności, przepi- sów dotyczących zielonego budownictwa, ustanowienia partnerstw publiczno-prywatnych, zintegrowanego zarządzania zasobami wodnymi i podejmowania decyzji w oparciu o dane. Kluczowe znaczenie ma poprawa ram prawnych, które powinny priorytetowo traktować kwestie odporności miejskiej oraz zrównoważonego rozwoju. Świadome projektowanie urbanistyczne i procesy decyzyjne możliwe są jedynie przy zrozumieniu skomplikowanych powiązań między zmianami w LULC a odpornością infrastruktury miejskiej. Zastosowanie praktyk zrównoważonego rozwoju umożliwi decydentom i urbanistom zminimalizowanie negatywnych konsekwencji zmian klimatycznych oraz podniesienie ogólnej jakości życia w miastach. Wyniki tego badania mogą potencjalnie znacznie poprawić dobrobyt i zrównoważony rozwój mieszkańców Abudży, zwłaszcza biorąc pod uwagę różnorodność napotykanych przez nich trudności miejskich.
Rocznik
Strony
6--17
Opis fizyczny
Bibliogr. 43 poz., rys., tab., wykr.
Twórcy
  • University of Abuja, Nigeria
  • Michael Okpara University of Agriculture, Umudike, Nigeria
Bibliografia
  • [1] Agdas M.G., Yenen Z. (2023). Determining Land Use/Land Cover (LULC) Changes Using Remote Sensing Method in Lüleburgaz and LULC Change’s Impacts on SDGs, European Journal of Sustainable Development, 12(1), 1. https://doi.org/10.14207/ejsd.2023.v12n1p1.
  • [2] Akaolisa C.C., Agbasi O.E., Etuk S.E., Adewumi R., Okoli E.A. (2023). Evaluating the Effects of Real Estate Development in Owerri, Imo State, Nigeria: Emphasizing Changes in Land Use/Land Cover (LULC), Journal of Landscape Ecology, 16(2), 98-113. https://doi.org/10.2478/jlecol-2023-0012.
  • [3] Aliyu A., Isma’il M., Zubairu S.M., Gwio-kura I.Y., Abdullahi A., Abubakar B.A., Mansur M. (2023). Analysis of land use and land cover change using machine learning algorithm in Yola North Local Government Area of Adamawa State, Nigeria, Environmental Monitoring and Assessment, 195(12). https://doi.org/10.1007/s10661-023-12112-w.
  • [4] Alp G., Ozdemir Y., Ozdemir S. (2020). Effects of Urban Transformation on Transportation Infrastructure: Goztepe Transformation Area Example, Asian Journal of Interdisciplinary Research, 206-218. https://doi.org/10.34256/ajir20116.
  • [5] Aniekwe S., Igu N.I. (2019). A Geographical Analysis of Urban Sprawl in Abuja, Nigeria, Journal of Geographical Research, 2(1), 12-18. https://doi.org/10.30564/jgr.v2i1.344.
  • [6] Asenso B.B., Jia L., Menenti M., Zhou J., Zeng Y. (2020). Mapping Land Use Land Cover Transitions at Different Spatiotemporal Scales in West Africa, Sustainability, 12(20), 8565. https://doi.org/10.3390/su12208565.
  • [7] Bernard S.H., Bilal H. (2023). An analysis of the dynamics of land surface temperature on land use/ land cover in Kano Metropolis, Kano State, Nigeria, Science World Journal, 18(2), 240-253. https://doi.org/10.4314/swj.v18i2.11.
  • [8] Bianchini L., Marucci A., Sateriano A., Di Stefano V., Alemanno R., Colantoni A. (2021). Urbanization and Long-Term Forest Dynamics in a Metropolitan Region of Southern Europe (1936-2018), Sustainability, 13(21), 12164. https://doi.org/10.3390/su132112164.
  • [9] Chou J., Dong W., Wang S., Fu Y. (2015). Quantitative analysis of agricultural land use change in China, Physics and Chemistry of the Earth, Parts a/B/C, 87-88, 3-9. https://doi.org/10.1016/j.pce.2015.08.011.
  • [10] Derdouri A., Wang R., Murayama Y., Osaragi T. (2021). Understanding the Links between LULC Changes and SUHI in Cities: Insights from Two-Decadal Studies (2001-2020), Remote Sensing, 13(18), 3654. https://doi.org/10.3390/rs13183654.
  • [11] Du Y., Bagan H., Takeuchi W. (2019). Land-Use/Land-Cover Change And Drivers Of Land Degradation In The Horqin Sandy Land, China, IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. https://doi.org/10.1109/igarss.2019.8899221.
  • [12] Enoguanbhor E., Gollnow F., Nielsen J., Lakes T., Walker B. (2019). Land Cover Change in the Abuja City-Region, Nigeria: Integrating GIS and Remotely Sensed Data to Support Land Use Planning, Sustainability, 11(5), 1313. https://doi.org/10.3390/su11051313.
  • [13] Faiyetole A.A., Adewumi, V.A. (2023). Urban expansion and transportation interaction: Evidence from Akure, southwestern Nigeria, Environment and Planning B: Urban Analytics and City Science, 239980832311694. https://doi.org/10.1177/23998083231169427.
  • [14] Fan M., Gu Z., Li W., Zhou D., Yu C.W. (2022). Integration of a large green corridor with an underground complex - a low carbon building solution for urban climate revival, Indoor and Built Environment, 31(4), 872-877. https://doi.org/10.1177/1420326x211067607.
  • [15] Gavrilidis A.A., Niță M.R., Onose D.A., Badiu D.L., Năstase I.I. (2019). Methodological framework for urban sprawl control through sustainable planning of urban green infrastructure, Ecological Indicators, 96, 67-78. https://doi.org/10.1016/j.ecolind.2017.10.054.
  • [16] Gonçalves L., Ribeiro P. (2020). Resilience of urban transportation systems. Concept, characteristics, and methods, Journal of Transport Geography, 85, 102727. https://doi.org/10.1016/j.jtrangeo.2020.102727.
  • [17] Gonçalves M.M., Villena-Manzanares F. (2021). Resilience of Urban Infrastructures in a Pandemic Scenario, European Journal of Formal Sciences and Engineering, 4(2), 10-19. https://doi.org/10.26417/484ccz15b.
  • [18] Grêt-Regamey A., Galleguillos-Torres M., Dissegna A., Weibel B. (2020). How urban densification influences ecosystem services - a comparison between a temperate and a tropical city, Environmental Research Letters, 15(7), 075001. https://doi.org/10.1088/1748-9326/ab7acf.
  • [19] Ha T. C., Nguyen T.P.C. (2023). Application of Multi-Temporal Landsat Images to Analyze the Relationship Between the Land Surface Temperature (LST) and the Land Use Land Cover (LULC) in Ho Chi Minh City, IOP Conference Series: Earth and Environmental Science, 1170(1), 012017. https://doi.org/10.1088/1755-1315/1170/1/012017.
  • [20] Hölscher K., Frantzeskaki N. (2021). Perspectives on urban transformation research: transformations in, of, and by cities, Urban Transformations, 3(1). https://doi.org/10.1186/s42854-021-00019-z.
  • [21] Hussein K., Alkaabi K., Ghebreyesus D., Liaqat M.U., Sharif H.O. (2020). Land use/land cover change along the Eastern Coast of the UAE and its impact on flooding risk, Geomatics, Natural Hazards and Risk, 11(1), 112-130. https://doi.org/10.1080/19475705.2019.1707718.
  • [22] Karamouz M., Taheri M., Khalili P., Chen X. (2019). Building Infrastructure Resilience in Coastal Flood Risk Management, Journal of Water Resources Planning and Management, 145(4). https://doi.org/10.1061/(asce)wr.1943-5452.0001043.
  • [23] Kumar B.P., Babu K.R., Padma Sree P., Rajasekhar M., Ramachandra M. (2021). A New Approach for Environmental Modelling of LULC Changes in Semi-arid Regions of Anantapur District, Andhra Pradesh, India Using Geospatial Techniques, Nature Environment and Pollution Technology, 20(2). https://doi.org/10.46488/nept.2021.v20i02.050.
  • [24] Lamichhane S., Shakya N.M. (2021). Land Use Land Cover (LULC) Change Projection in Kathmandu Valley using the CLUE-S Model, Journal of Advanced College of Engineering and Management, 6, 221-233. https://doi.org/10.3126/jacem.v6i0.38361.
  • [25] Momoh J., Medjdoub B., Ebohon O.J., Ige O., Young B.E., Ruoyu J. (2022). The implications of adopting sustainable urbanism in developing resilient places in Abuja, Nigeria, International Journal of Building Pathology and Adaptation. https://doi.org/10.1108/ijbpa-03-2022-0043.
  • [26] Mottahedi A., Sereshki F., Ataei M., Nouri Qarahasanlou A., Barabadi A. (2021). The Resilience of Critical Infrastructure Systems: A Systematic Literature Review, Energies, 14(6), 1571. https://doi.org/10.3390/en14061571.
  • [27] Naikoo M.W., Rihan M., Ishtiaque M., Shahfahad. (2020). Analyses of land use land cover (LULC) change and built-up expansion in the suburb of a metropolitan city: Spatio-temporal analysis of Delhi NCR using landsat datasets, Journal of Urban Management, 9(3), 347-359. https://doi.org/10.1016/j.jum.2020.05.004.
  • [28] Noi L.V.T., Cooper R.T., Trang D.T.T., Minh T.Q., Huong C.T.T., Vin S., Sitak S., Intharathirat R., Lertsahakul J., Tinh T.T. (2021). Climate change risk assessment and adaptation for loss and damage of urban transportation infrastructure in Southeast Asia, APN Science Bulletin, 11(1). https://doi.org/10.30852/sb.2021.1436.
  • [29] Nuissl H., Siedentop S. (2020). Urbanisation and Land Use Change, Human-Environment Interactions, 75-99. https://doi.org/10.1007/978-3-030-50841-8_5.
  • [30] Nwakaire C.M., Onn C.C., Yap S.P., Yuen C.W., Onodagu P.D. (2020). Urban Heat Island Studies with emphasis on urban pavements: A review, Sustainable Cities and Society, 63, 102476. https://doi.org/10.1016/j.scs.2020.102476.
  • [31] Okeleye S.O., Okhimamhe A.A., Sanfo S., Fürst C. (2023). Impacts of Land Use and Land Cover Changes on Migration and Food Security of North Central Region, Nigeria, Land, 12(5), 1012. https://doi.org/10.3390/land12051012.
  • [32] Otoo E.A., Boateng G. (2021). Land Use Land Cover (LULC) Change Analysis of the Akuapem-North Municipality, Eastern Region; Ghana, International Journal of Research and Innovation in Social Science, 05(10), 384-390. https://doi.org/10.47772/ijriss.2021.51019.
  • [33] Ramzan M., Saqib Z.A., Hussain E., Khan J.A., Nazir A., Dasti M.Y.S., Ali S., Niazi N.K. (2022). Remote Sensing-Based Prediction of Temporal Changes in Land Surface Temperature and Land Use-Land Cover (LULC) in Urban Environments, Land, 11(9), 1610. https://doi.org/10.3390/land11091610.
  • [34] Rode P. (2013). Trends and Challenges: Global Urbanisation and Urban Mobility, Megacity Mobility Culture, 3-21. https://doi.org/10.1007/978-3-642-34735-1_1.
  • [35] Ronchi S., Arcidiacono A., Pogliani L. (2020). Integrating green infrastructure into spatial planning regulations to improve the performance of urban ecosystems, Insights from an Italian case study, Sustainable Cities and Society, 53, 101907. https://doi.org/10.1016/j.scs.2019.101907.
  • [36] Shuaibu J.A., Kara C. (2019). Evaluating suitability for sustainable urban growth of Abuja by using MCE and GIS, International Journal of Advanced and Applied Sciences, 6(7), 68-76. https://doi.org/10.21833/ijaas.2019.07.009.
  • [37] Singh V.D., Rehan Ali S., Kant Piyoosh A. (2022). A Review on the Relationship between LULC and LST using Geospatial Technologies, 2022 11th International Conference on System Modeling & Advancement in Research Trends (SMART). https://doi.org/10.1109/smart55829.2022.10047156.
  • [38] Sun Y., Jiang J., Yang F., Chen X., Yu Z., Guo Q., Zhao Y. (2022). Spatial–temporal variation analysis of water storage and its impacts on ecology and environment in high‐intensity coal mining areas, Land Degradation & Development, 34(2), 338-352. https://doi.org/10.1002/ldr.4462.
  • [39] Tachaudomdach S., Arunotayanun K., Upayokin A. (2018). A systematic review of the resilience of transportation infrastructures affected by flooding, Proceedings of the Asia-Pacific Conference on Intelligent Medical 2018 & International Conference on Transportation and Traffic Engineering 2018. https://doi.org/10.1145/3321619.3321668
  • [40] Twisa S., Buchroithner M.F. (2019). Land-Use and Land-Cover (LULC) Change Detection in Wami River Basin, Tanzania, Land, 8(9), 136. https://doi.org/10.3390/land8090136.
  • [41] Vujovic S., Haddad B., Karaky H., Sebaibi N., Boutouil M. (2021). Urban Heat Island: Causes, Consequences, and Mitigation Measures with Emphasis on Reflective and Permeable Pavements, CivilEng, 2(2), 459-484. https://doi.org/10.3390/civileng2020026.
  • [42] Zhang T., Su J., Xu Z., Luo Y., Li, J. (2021). Sentinel-2 Satellite Imagery for Urban Land Cover Classification by Optimized Random Forest Classifier, Applied Sciences, 11(2), 543. https://doi.org/10.3390/app11020543.
  • [43] Zubair O.A., Ojigi L.M., Mbih R.A. (2015). Urbanization: A Catalyst for the Emergence of Squatter Settlements and Squalor in the Vicinities of the Federal Capital City of Nigeria, Journal of Sustainable Development, 8(2). https://doi.org/10.5539/jsd.v8n2p134.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1df14581-c907-41ea-a54c-29adeb09e7a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.