PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sources and techniques of domestic heating within TRITIA region

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the balance of energy consumption for domestic heating in Opole and Silesian Voivodship (Poland), divided into various media. The report was based on an analysis of approximately 250 documents containing low-carbon economy plans for individual municipalities (gminas). The authors compared the current situation in these voivodships and their districts with the structure of the heating system in Poland as a whole, based on data from the Central Statistical Office of Poland. The data demonstrate that the use of coal-based energy media has not changed significantly over the years and around 55-60% of households with individual heating systems use this type of media. A much more favourable trend is found in large urban centres, where there is a high proportion of district heating. The most common of the lower-emitting fuels (LPG, natural gas, electricity, heat pumps) is natural gas, and the share of the remaining sources within this group are barely significant.
Rocznik
Strony
260--276
Opis fizyczny
Bibliogr. 65 poz.
Twórcy
  • Central Mining Institute, Silesian Centre for Environmental Radioactivity, Poland
  • Central Mining Institute, Silesian Centre for Environmental Radioactivity, Poland
  • Central Mining Institute, Silesian Centre for Environmental Radioactivity, Poland
Bibliografia
  • [1] World Health Organization (WHO). World Health Assembly, 69. Health and the environment: draft road map for an enhanced global response to the adverse health effects of air pollution: report by the Secretariat. WHO; 2016. Retrieved from: https://apps.who.int/iris/handle/10665/252673.
  • [2] World Health Organization (WHO). Ambient air pollution: a global assessment of exposure and burden of disease: WHO Regional Office for Europe. 2016. ISBN 9789241511353. Retrieved from: https://apps.who.int/iris/bitstream/handle/10665/252673/A69_18-en.pdf?sequence=1&isAllowed=y. [Accessed 8 March 2021].
  • [3] http://www.eea.europa.eu/publications/air-quality-in-europe-2016.
  • [4] http://acm.eionet.europa.eu/reports/ETCACM_TP_2016_5_AQ_HIA_methodology.
  • [5] http://www.euro.who.int/_data/assets/pdf_file/0006/238956/Health-risks-of-air-pollution-in-EuropeHRAPIE-project,-Recommendations-for-concentrationresponse-functions-for-costbenefit-analysis-ofparticulate-matter,-ozone-and-nitrogen-dioxide.pdf.
  • [6] World Health Organization (WHO). Economic cost of the health impact of air pollution in Europe: clean air, health and wealth. Copenhagen: WHO Regional Office for Europe; 2015.
  • [7] Qu H, Chan WY, Xu A, Chung KL, Lau KH, Guo P. Visual analysis of the air pollution problem in Hong Kong. IEEE Trans Visual Comput Graph 2007;13(6):1408-15. https://doi:10.1109/TVCG.2007.70523.
  • [8] Cohen A, Anderson HR, Frostad J, K Estep, et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017;389:1907-18. https://doi.org/10.1016/SO140-6736(17)30505-5.
  • [9] Belis CA, Karagulian F, Larsen BR, Hopke PK. Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe. Atmos Environ 2013;69:94-108. https://doi.org/10.1016/j.atmosenv.2012.11.009.
  • [10] Karagulian F, Belis CA, Dora CFC, Prüss-Ustün AM, Bonjour S, Adair-Rohani H, et al. Contributions to cities' ambient particulate matter (PM): a systematic review of local source contributions at global level. Atmos Environ 2015;120:475-83. https://doi.org/10.1016/j.atmosenv.2015.08.087.
  • [11] Kiesewetter G, Schöpp W, Amann M. A scalable approach to modelling health impacts of air pollution based on globally available data 2016. [online]. Available from: http://scholarsarchive.byu.edu/iemssconference/2016/Stream-A/80/.
  • [12] Halkos G, Managi S, Tsilika K. Measuring air polluters' responsibility in transboundary pollution networks. Environ Econ Pol Stud 2018;20(3):619-39. https://doi.org/10.1007/s10018-017-0208-3.
  • [13] Fujii H, Managi S. Economic development and multiple air pollutant emissions from the industrial sector. Environ Sci Pollut Res - Int 2016;23(3):2802-12. https://doi.org/10.1007/s11356-015-5523-2.
  • [14] Halkos G, Tsilika K. Understanding transboundary air pollution network: emissions, depositions and spatio-temporal distribution of pollution in European region. Resour Conserv Recycl 2019;145:113-23. https://doi.org/10.1016/j.resconrec.2019.02.014.
  • [15] Bitta J, Svozilik V, Pavlikova I, Jancik P. Air pollution dispersion modelling using spatial analyses. ISPRS Int J Geo-Inf 2018;7(12):489. https://doi.org/10.20944/preprints201810.0159. 2018.
  • [16] Zhu C, Tian H, Hao J. Global anthropogenic atmospheric emission inventory of twelve typical hazardous trace elements, 1995-2012. Atmos Environ 2020;220:117061. https://doi.org/10.1016/j.atmosenv.2019.117061.
  • [17] Vallius M, Janssen NA, Heinrich J, Hoek G, Ruuskanen J, Cyrys J, et al. Sources and elemental composition of ambient PM(2.5) in three European cities. Sci Total Environ 2005; 337(1-3):147-62. https://doi.org/10.1016/j.scitotenv.2004.06.018. PMID: 15626386.
  • [18] Koolen CD, Rothenberg G. Air pollution in Europe. Chem-SusChem 2019;12(1):164-72. https://doi.org/10.1002/cssc.201802292. 2019.
  • [19] Juda-Rezler K, Reizer M, Oudinet JP. Determination and analysis of PM10 source apportionment during episodes of air pollution in central Eastern European urban areas: the case of wintertime 2006. Atmos Environ 2011;45:6557-66. https://doi.org/10.1016/j.atmosenv.2011.08.020.
  • [20] Pascal M, de Crouy Chanel P, Wagner V, Corso M, Tillier C, Bentayeb M, et al. The mortality impacts of fine particles in France. Sci Total Environ 2016;571:416-25. https://doi.org/10.1016/j.scitotenv.2016.06.213.
  • [21] Pokorná P, Schwarz J, Krejci R, Swietlicki E, Havránek V, Ždímal V. Comparison of PM2.5 chemical composition and sources at a rural background site in Central Europe be- tween 1993/1994/1995 and 2009/2010: effect of legislative regulations and economic transformation on the air quality. Environ Pollut 2018;241:841-51. https://doi.org/10.1016/j.envpol.2018.06.015. Epub 2018 Jun 14. PMID: 29909310.
  • [22] Pokorná P, Hovorka J, Kroužek J, Hopke PK. Particulate matter source apportionment in a village situated in industrial region of Central Europe. J Air Waste Manag Assoc 2013;63(12):1412-21. https://doi.org/10.1080/10962247.2013.825215.
  • [23] Zajusz-Zubek E, Kaczmarek K, Mainka A. Trace elements speciation of submicron particulate matter (PM1) collected in the surroundings of power plants. Int J Environ Res Publ Health 2015;12:13085-103. https://doi.org/10.3390/ijerph121013085.
  • [24] Juda-Rezler K, Zajusz-Zubek E, Reizer M, Kurek E, Bulska E, Klejnowski K. Bioavailability of elements in atmospheric PM2.5 during winter episodes at Central Eastern European urban background site. Atmos Environ 2021;245:117993. https://doi.org/10.1016/j.atmosenv.2020.117993. 15 January 2021.
  • [25] Zajusz-Zubek E, Mainka A, Kaczmarek K. Determination of water-soluble elements in PM2.5, PM10, and PM2.5-10 collected in the surroundings of power plants. E3S Web of Conferences, vol. 28; 2018, 01042. https://doi.org/10.1051/e3sconf/20182801042.
  • [26] Samek L, Stegowski Z, Furman L, Styszko K, Szramowiat K, Fiedor J. Quantitative assessment of PM2.5 sources and their seasonal variation in Krakow. Water Air Soil Pollut 2017; 228(8):290. https://doi.org/10.1007/s11270-017-3483-5. Epub 2017 Jul 21. PMID: 28794573; PMCID: PMC5522505.
  • [27] Rogula-Kozłowska W, Klejnowski K, Rogula-Kopiec P, Ośrodka L, Krajny E, Błaszczak B, et al. Spatial and seasonal variability of the mass concentration and chemical composition of PM2.5 in Poland. Air Qual Atmos Health 2014;7:41-58. https://doi.org/10.1007/s11869-013-0222-y.
  • [28] Pastuszka JS, Rogula-Kozłowska W, Zajusz-Zubek E. Characterization of PM10 and PM2.5 and associated heavy metals at the crossroads and urban background site in Zabrze, Upper Silesia, Poland, during the smog episodes. Environ Monit Assess 2010;168:613-27. https://doi.org/10.1007/s10661-009-1138-8.
  • [29] Rogula-Kozłowska W, Klejnowski K, Rogula-Kopiec P, Mathews B, Szopa S. A study on the seasonal mass closure of ambient fine and coarse dusts in Zabrze, Poland. Bull Envi- ron Contam Toxicol 2012;88:722-9. https://doi.org/10.1007/s00128-012-0533-y.
  • [30] Ham WA, Kleeman MJ. Size-resolved source apportionment of carbonaceous particulate matter in urban and rural sites in central California. Atmos Environ 2011;45:3988-95.
  • [31] Majewski G, Rogula-Kozłowska W. The elemental composition and origin of fine ambient particles in the largest Polish conurbation: first results from the short-term winter campaign. Theor Appl Climatol 2016;125:79-92. https://doi.org/10.1007/s00704-015-1494-y.
  • [32] World Health Organization (WHO), Health effects of black carbon by:Janssen NAH, Gerlofs-Nijland ME, Lanki T, Salonen RO, Cassee F, Hoek G, Fischer P, et al. WHO regional Office for Europe. 2012. https://www.euro.who.int/__data/assets/pdf_file/0004/162535/e96541.pdf 08.03.2021.
  • [33] Rogula-Kozłowska W, Klejnowski K. Submicrometer aerosol in rural and urban backgrounds in southern Poland: primary and secondary components of PM1. Bull Environ Contam Toxicol 2013;90:103-9. https://doi.org/10.1007/s00128-012-0868-4.
  • [34] Harrison RM, Yin J. Sources and processes affecting carbonaceous aerosol in central England. Atmos Environ 2008;42:1413-23. https://doi.org/10.1016/j.atmosenv.2007.11.004.
  • [35] Zajusz-Zubek E, Mainka A, Korban Z, Pastuszka JS. Evaluation of highly mobile fraction of trace elements in PM10 collected in Upper Silesia (Poland): preliminary results. Atmos. Pollut. Res. 2015;6(6):961-8. https://doi.org/10.1016/j.apr.2015.05.001.
  • [36] Jiang M, Gao X, Guan Q, Hao X, An F. The structural roles of sectors and their contributions to global carbon emissions: a complex network perspective. J Clean Prod 2019;208:426-35. https://doi.org/10.1016/j.jclepro.2018.10.127.
  • [37] Kubica R, Kubica K, Kacprzyk W. Limitation of black carbon emissions from solid fuel combustion in small plants (Polish title: ograniczanie emisji sadzy ze spalania paliw stałych w instalacjach małej mocy). Przemys Chem 2016;95(3):472-9. https://doi.org/10.15199/62.2016.3.27.
  • [38] World Health Organization (WHO). Residential heating with wood and coal: health impacts and policy options in Europe and North America. WHO Regional Office for Europe; 2015.
  • [39] Morawska L, Afshari A, Bae G, Buonanno G, Chao C, Hänninen O, et al. Indoor aerosols: from personal exposure to risk assessment. Indoor Air 2013;23:462-87. https://doi.org/10.1111/ina.12044.
  • [40] Ward T, Noonan C. Results of a residential indoor PM2.5 sampling program before and after a woodstove changeout. Indoor Air 2008;18:408-15. https://doi.org/10.1111/j.1600-0668.2008.00541.x.
  • [41] Wong JYY, Bassign BA, Hu W, Seow WJ, Shiels MS, Ji BT, et al. Household coal combustion, indoor air pollutants, and circulating immunologic/inflammatory markers in rural China. J Toxicol Environ Health 2019;82(6):411-21. https://doi.org/10.1080/15287394.2019.1614500. 2019.
  • [42] Zhang J, Smith KR. Household air pollution from coal and biomass fuels in China: measurements, health impacts, and interventions. Environ Health Perspect 2007;115(6):848-55. https://doi.org/10.1289/ehp.9479.
  • [43] Heidi E, Staff M, Aunan K, Seip HM. Potential health benefit of reducing household solid fuel use in Shanxi province, China. Sci Total Environ 2006;372(1):120-32. https://doi.org/10.1016/j.scitotenv.2006.09.007. 2006; 15.
  • [44] Bozkurt Z, Dogan G, Arslanbas D, Pekey B, Pekey H, Dumanoglu Y, et al. Determination of the personal, indoor and outdoor exposure levels of inorganic gaseous pollutants in different microenvironments in an industrial city. Environ Monit Assess 2015;187(9):590. https://doi.org/10.1007/s10661-015-4816-8.
  • [45] Hulin M, Caillaud D, Annesi-Maesano I. Indoor air pollution and childhood asthma: variations between urban and rural areas. Indoor Air 2010;20:502-14. https://doi.org/10.1111/j.1600-0668.2010.00673.x.
  • [46] Almeida SM, Canha N, Silva A, Freitas MD, Pegas P, Alves C, et al. Children exposure to atmospheric particles in indoor of Lisbon primary schools. Atmos Environ 2011;45:7594-9. https://doi.org/10.1016/j.atmosenv.2010.11.052.
  • [47] Mejía JF, Choy SL, Mengersen K, Morawska L. Methodology for assessing exposure and impacts of air pollutants in school children: data collection, analysis and health effects - a literature review. Atmos Environ 2011;45:813-23. https://doi.org/10.1016/j.atmosenv.2010.11.009. 2011.
  • [48] Branco PTBS, Alvim-Ferraz MCM, Martins FG, Sousa SIV. Indoor air quality in urban nurseries at Porto city: particulate matter assessment. Atmos Environ 2014;84:133-43. https://doi.org/10.1016/j.atmosenv.2013.11.035.
  • [49] Kingham S, Durand M, Harrison J, Cavanagh J, Epton M. Temporal variations in particulate exposure to wood smoke in a residential school environment, Atmos. Environ Times 2008;42:4619-31. https://doi.org/10.1016/j.atmosenv.2008.01.064.
  • [50] Buonanno G, Marini S, Morawska L, Fuoco FC. Individual dose and exposure of Italian children to ultrafine particles. Sci Total Environ 2012;438:271-7. https://doi.org/10.1016/j.scitotenv.2012.08.074.
  • [51] Adaji EE, Ekezie W, Clifford M, Phalkey R. Understanding the effect of indoor air pollution on pneumonia in children under 5 in low- and middle-income countries: a systematic review of evidence. Environ Sci Pollut Res 2019;26:3208-25. https://doi.org/10.1007/s11356-018-3769-1.
  • [52] Kurmi OP, Lam KBH, Ayres JG. Indoor air pollution and the lung in low- and medium-income countries. Eur Respir J 2012;40:239-54. https://doi.org/10.1183/09031936.00190211.
  • [53] Chen C, Modrek S. Gendered impact of solid fuel use on acute respiratory infections in children in China. BMC Publ Health 2018;18:1170. https://doi.org/10.1186/s12889-018-6035-z.
  • [54] Guercio V, Pojum IC, Leonardi GS, Shrubsole C, Gowers AM, Dimitroulopoulou S, et al. Exposure to indoor and outdoor air pollution from solid fuel combustion and respiratory out-comes in children in developed countries: a systematic review and meta-analysis. Sci Total Environ 2021;755(1):142187. https://doi.org/10.1016/j.scitotenv.2020.142187. 2021.
  • [55] Mainka A, Zajusz-Zubek E. Indoor air quality in urban and rural preschools in upper Silesia, Poland: particulate matter and carbon dioxide. Int J Environ Res Publ Health 2015;12:7697-771. https://doi.org/10.3390/ijerph120707697.
  • [56] Błaszczyk E, Rogula-Kozłowska W, Klejnowski K, Kubiesa P, Fulara I, Miełżyńska Svach D. Indoor air quality in urban and rural kindergartens: short-term studies in Silesia, Poland. Air Qual Atmos Health 2017;10:1207-20. https://doi.org/10.1007/s11869-017-0505-9.
  • [57] Fine dusts in the atmosphere. A compendium of knowledge about particulate matter pollution in Poland (Polish title: Pyły drobne w atmosferze. In: Juda-Rezler K, Toczko B, editors. Kompendium wiedzy o zanieczyszczeniu pyłem zawieszonym w Polsce). Warszawa: Biblioteka Monitoringu Środowiska; 2016. ISBN 978-83-61227-73-1.
  • [58] Główny Urząd Statystyczny [GUS]. Energy consumption in households in 2015 (Polish title: zu _zycie energii w gospodarstwach domowych w 2015 r). 2015.
  • [59] Główny Urząd Statystyczny [GUS]. Energy consumption in households in 2018 (Polish title: zu _zycie energii w gospodarstwach domowych w 2018 r). 2018.
  • [60] Act 2006. Act of August 25, 2006 on the fuel quality monitoring and scrutinizing system (Polish title: Ustawa z dnia 25 sierpnia 2006 r. o systemie monitorowania i kontrolowania jakości paliw). Pol. Law J. 2006;169:1200.
  • [61] Regulation 2018a. Regulation of the Minister of Energy of September 27, 2018 on quality requirements for solid fuels (Polish title: Rozporządzenie Ministra Energii z dnia 27 września 2018 r. w sprawie wymagań jakościowych dla paliw stałych). Pol. Law J. 2018:1890.
  • [62] Regulation of the Minister of Energy of September 27, 2018 on the method of sampling of solid fuels (Polish title: Rozporządzenie Ministra Energii z dnia 27 września 2018 r. w sprawie sposobu pobierania próbek paliw stałych). Pol. Law J. 2018:1891.
  • [63] Regulation of the Minister of Energy of September 27, 2018 on the model certificate for the quality of solid fuels. (Polish title: Rozporządzenie Ministra Energii z dnia 27 września 2018 r. w sprawie wzoru świadectwa jakości paliw stałych). Pol. Law J. 2018:1892. 2018.
  • [64] Regulation of the Minister of Energy of September 27, 2018 on methods for testing the quality of solid fuels. (Polish title: Rozporządzenie. 2018d. Rozporządzenie Ministra Energii z dnia 27 września 2018 r. w sprawie metod badania jakości paliw stałych). Pol. Law J. 2018:1892.
  • [65] Quaschning V. Regenerative Energiesystemetechnologie - Berechnung - Klimaschutz. Carl Hanser Verlag GmbH & Co. KG; 2019. ISBN: 978-3-446-46113-0.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1def66c4-4955-49c3-85f8-abdb0621b56b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.