Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Simultaneous Localization and Mapping (SLAM) is applied to robots for accurate navigation. The stereo cameras are suitable for visual SLAM as they can give the depth of the visual landmarks and more precise estimations of the robot’s pose. In this paper, we present a survey of SLAM methods, either Bayesian or bioinspired. Then we present a new method of SLAM, which we call stereo Extended Kalman Filter, improving the matching by computing the innovation matrices from the left and the right images. The landmarks are computed from Oriented FAST and Rotated BRIEF (ORB) features for detecting salient points and their descriptors. The covariance matrices of the state and the robot’s map are reduced during the robot’s motion. Experiments are done on the raw images of the Kitti dataset.
Rocznik
Tom
Strony
62--71
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
autor
- Physics Department, Laboratory Con‐ ception and Systems, Faculty of Sciences, Mohammed V University in Rabat, 4, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
autor
- Computer Sciences Depart‐ ment, Intelligent Processing and Security Systems Team, Faculty of Sciences, Mohammed V University in Rabat, 4, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
Bibliografia
- [1] Ambrus, R., Claici, S., Wendt, A.: Automatic room segmentation from unstructured 3-d data of indoor environments. IEEE Robotics and Automation Letters 2, 749–756 (2017)
- [2] Ball, D., Heath, S., Wiles, J., Wyeth, G., Corke, P., Milford, M.: Openratslam: an open source brain-based slam system. Autonomous Robots 34, 1–28 (04 2013). doi: 10.1007/s10514-012-9317-9
- [3] Banino, A., Barry, C., Uria, B., Blundell, C., Lillicrap, T., Mirowski, P., Pritzel, A., Chadwick, .J., Degris, T., Modayil, J., Wayne, G., Soyer, H., Viola, F., Zhang, B., Goroshin, R., Rabinowitz, N.C., Pascanu, R., Beattie, C., Petersen, S., Sadik, A., Gaffney, S., King, H., Kavukcuoglu, K., Hassabis, D., Hadsell, R., Kumaran, D.: Vector-based navigation using grid-like representations in artificial agents. Nature 557, 429–433 (2018)
- [4] Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I.D., Leonard, J.J.: Simultaneous localization and mapping: Present, future, and the robust-perception age. CoRR abs/1606.05830 (2016), http://arxiv.org/abs/1606.05830
- [5] Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual-inertial and multi-map slam (2020)
- [6] Davison, A., Reid, I., Molton, N., Stasse, O.: Monoslam: Real-time single camera slam. IEEE Transactions on Pattern Analysis and Machine Intelligence 29, 1052–1067 (2007)
- [7] Doherty, K., Baxter, D., Schneeweiss, E., Leonard, J.: Probabilistic data association via mixture models for robust semantic slam. 2020 IEEE International Conference on Robotics and Automation (ICRA) pp. 1098–1104 (2020)
- [8] Doherty, K., Fourie, D., Leonard, J.: Multimodal semantic slam with probabilistic data association. 2019 International Conference on Robotics and Automation (ICRA) pp. 2419–2425 (2019)
- [9] Finman, R., Paull, L., Leonard, J.: Toward object-based place recognition in dense rgb-d maps. 2015 IEEE International Conference on Robotics and Automation (ICRA) (2015)
- [10] Gálvez-López, D., Tardós, J.D.: Bags of binary words for fast place recognition in image sequences. IEEE Transactions on Robotics 28, 1188–1197 (2012)
- [11] HĀydal, Ā., SkytĀ,en, E., Andersson, S., Moser, M.B., Moser, E.: Object-vector coding in the medial entorhinal cortex. Nature 568, 1–8 (04 2019). doi: 10.1038/s41586-019-1077-7
- [12] Kiggundu, A., Weber, C., Wermter, S.: A compressing auto-encoder as a developmental model of grid cells (02 2017)
- [13] Lowry, S.M., Sünderhauf, N., Newman, P., Leonard, J.J., Cox, D.D., Corke, P.I., Milford, M.J.: Visual place recognition: A survey. IEEE Trans. Robotics 32(1), 1–19 (2016). doi: 10.1109/TRO.2015.2496823.
- [14] Masone, C., Caputo, B.: A survey on deep visual place recognition. IEEE Access 9, 19516–19547 (2021). doi: 10.1109/ACCESS.2021.3054937,
- [15] Montiel, J., Civera, J., Davison, A.: Unified inverse depth parametrization for monocular slam. In: Robotics: Science and Systems (2006)
- [16] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE Transactions on Robotics 33, 1255–1262 (2017)
- [17] Pillai, S., Leonard, J.J.: Self-supervised visual place recognition learning in mobile robots. CoRR abs/1905.04453 (2019), http://arxiv.org/abs/1905.04453
- [18] Raoui, Y., Göller, M., Devy, M., Kerscher, T., Zöllner, J.M., Dillmann, R., Coustou, A.: Rfid-based topological and metrical self-localization in a structured environment. 2009 International Conference on Advanced Robotics pp. 1–6 (2009)
- [19] Raoui, Y., Weber, C., Wermter, S.: Neoslam: Neural object slam for loop closure and navigation. In: Artificial Neural Networks and Machine Learning - ICANN 2022 - 31th International Conference on Artificial Neural Networks, Bristol, England, September 6-9, 2022, Proceedings, Part II (2022)
- [20] Rolls, E., Stringer, S., Elliot, T.: Entorhinal cortex grid cells can map to hippocampal place cells by competitive learning. Network: Computation in Neural Systems 17, 447–465 (2006)
- [21] Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: Orb: An efficient alternative to sift or surf. In: 2011 International Conference on Computer Vision. pp. 2564–2571 (2011). doi: 10.1109/ICCV.2011.6126544
- [22] Shan, T., Englot, B., Meyers, D., Wang, W., Ratti, C., Rus, D.: Lio-sam: Tightly-coupled lidar inertial odometry via smoothing and mapping (2020)
- [23] Shan, T., Englot, B.J., Duarte, F., Ratti, C., Rus, D.: Robust place recognition using an imaging lidar.CoRR abs/2103.02111 (2021), https://arxiv.org/abs/2103.02111
- [24] Tourani, S., Desai, D., Parihar, U.S., Garg, S., Sarvadevabhatla, R.K., Krishna, K.M.: Early bird: Loop closures from opposing viewpoints for perceptually-aliased indoor environments. CoRR abs/2010.01421 (2020), https://arxiv.org/abs/2010.01421
- [25] Volkov, M., Rosman, G., Feldman, D., III, J.W.F., Rus, D.: Coresets for visual summarization with applications to loop closure. In: IEEE International Conference on Robotics and Automation, ICRA 2015, Seattle, WA, USA, 26-30 May, 2015. pp. 3638–3645. IEEE (2015). doi: 10.1109/ICRA.2015.7139704.
- [26] Xiao, L., Wang, J., Qiu, X., Rong, Z., Zou, X.: Dynamic-slam: Semantic monocular visual localization and mapping based on deep learning in dynamic environment. Robotics Auton. Syst. 117,1–16 (2019)
- [27] Yongbao, A., Ting, R., Xiao-qiang, Y., Jia-lin, H., Lei, F., Jianbin, L., Ming, L.: Visual slam in dynamic environments based on object detection. Defence Technology (2020)
- [28] Yu, F., Shang, J., Hu, Y., Milford, M.: Neuroslam: a brain-inspired slam system for 3d environments. Biological Cybernetics 113(5-6), 515–545 (December 2019). doi: 10.1007/s00422-019-00806-9, https://eprints.qut.edu.au/198104/
- [29] Zhou, X., Weber, C., Wermter, S.: Robot localization and orientation detection based on place cells and head-direction cells. In: Lintas, A., Rovetta, S., Verschure, P.F.M.J., Villa, A.E.P. (eds.) Artificial Neural Networks and Machine Learning - ICANN 2017 - 26th International Conference on Artificial Neural Networks, Alghero, Italy, September 11-14, 2017, Proceedings, Part I. Lecture Notes in Computer Science, vol. 10613, pp. 137–145. Springer (2017). doi: 10.1007/978-3-319-68600-4_17.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1de89525-72af-402f-b4c9-298ef22cfbbc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.