Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This work deals with the problem of the accurate task space trajectory tracking subject to finite-time convergence. Kinematic and dynamic equations of a redundant manipulator are assumed to be uncertain. Moreover, globally unbounded disturbances are allowed to act on the manipulator when tracking the trajectory by the end-effector. Furthermore, the movement is to be accomplished in such a way as to reduce both the manipulator torques and their oscillations thus eliminating the potential robot vibrations. Based on suitably defined task space non-singular terminal sliding vector variable and the Lyapunov stability theory, we propose a class of chattering-free robust controllers, based on the estimation of transpose Jacobian, which seem to be effective in counteracting both uncertain kinematics and dynamics, unbounded disturbances and (possible) kinematic and/or algorithmic singularities met on the robot trajectory. The numerical simulations carried out for a redundant manipulator of a SCARA type consisting of the three revolute kinematic pairs and operating in a two-dimensional task space, illustrate performance of the proposed controllers as well as comparisons with other well known control schemes.
Rocznik
Tom
Strony
547--568
Opis fizyczny
Bibliogr. 65 poz., wykr.
Twórcy
autor
- Faculty of the Mechanical Engineering, University of Zielona Góra, ul. Prof. Z. Szafrana 4, 65-516, Zielona Góra, Poland
Bibliografia
- [1] Khatib O. (1987): A unified approach for motion and force control of robot manipulators. – EEE Journal on Robotics and Automation, vol.3, No.1, pp.43-53.
- [2] Hsu P., Hauser J. and Sastry S. (1989): Dynamic control of redundant manipulators. – Journal of Robotic Systems, vol.6, No.2, pp.133-148.
- [3] Canudas C., Siciliano B. and Bastin G. (Eds.) (1996): Theory of Robot Control. – London: Springer.
- [4] Siciliano B., Sciavicco L., Villani L. and Oriolo G. (Eds.) (2010): Robotics: Modelling, Planning and Control. – Springer Verlag.
- [5] Galicki M. (2004): Path following by the end-effector of a redundant manipulator operating in a dynamic environment. – IEEE Transactions on Robotics, vol.20, No.6, pp.1018-1025.
- [6] Kelly R. and Moreno J. (2005): Manipulator motion control in operational space using joint velocity inner loop. – Automatica, vol.41, No.8, pp.1423-1432.
- [7] Nakanishi J., Cory R., Mistry M., Peters J. and Schaal S. (2008): Operational space control: A theoretical and empirical comparison. – The International Journal of Robotics Research, vol.27, No.6, pp.737-757.
- [8] Moreno-Valenzuela J. and Gonzales-Hernandez L. (2011): Operational space trajectory tracking control of robot manipulators endowed with a primary controller of synthetic joint velocity. – ISA Transactions, vol.50, No.1, pp.131-140.
- [9] Tatlicioglu E., Braganza D., Burg T.C. and Dawson D.M. (2008): Adaptive control of redundant robot manipulators with sub-task objectives. – In Proc. ACC, pp.856-860.
- [10] Sadeghian H., Keshmiri M., Villani L. and Siciliano B. (2012): Priority oriented adaptive control of kinematically redundant manipulators. – In Proc. IEEE RA, pp.293-298.
- [11] Sadeghian H., Villani L., Kesmiri M. and Siciliano B. (2013): Dynamic multi-priority control in redundant robotic systems. – Robotica, vol.31, No.07, pp.1155-1167.
- [12] Feng, G. and Palaniswami M. (1993): Adaptive control of robot manipulators in task space. – IEEE Trans. Automat. Contr., vol.38, No.1, pp.100-104.
- [13] Zergeroglu E., Dawson D.M., Walker I. and Behal A. (2000): Nonlinear tracking control of kinematically redundant robot manipulators. – In Proc. ACC, vol.4, pp.2513-2517.
- [14] Braganza D., Dixon W.E., Dawson D.M. and Xian B. (2005): Tracking control for robot manipulators with kinematic and dynamic uncertainty. – In Proc. CDC, pp.5293-5297.
- [15] Braganza D., Dixon W.E., Dawson D.M. and Xian B. (2008): Tracking control for robot manipulators with kinematic and dynamic uncertainty. – International Journal of Robotics and Automation, vol.23, No.2, pp.117-126.
- [16] Galicki M. (2007): Adaptive path-constrained control of a robotic manipulator in a task space. – Robotica, vol.25, No.1, pp.103-112.
- [17] Cheah C.C., Liu C. and Slotine J.J. (2006): Adaptive tracking control for robots with unknown kinematic and dynamic properties. – The International Journal of Robotics Research, vol.25, No.3, pp.283-296.
- [18] Li X. and Cheah C.C. (2012): Adaptive regional feedback control of robotic manipulator with uncertain kinematics and depth information. – In Proc. ACC, pp.5472-5477.
- [19] Li, X. and Cheah C.C. (2013): Global task-space adaptive control of robot. – Automatica, vol.49, No.1, pp.58-69.
- [20] Galicki M. (2013): Inverse-free control of a robotic manipulator in a task space. – Robotics and Autonomous Systems, vol.62, No.2, pp.131-141.
- [21] Zuo Z. (2013): Adaptive trajectory tracking control design with command filtered compensation for a quadrotor. – Journal of Vibration and Control, vol.19, No.1, pp.94-108.
- [22] Zergeroglu E., Sahin H.T., Ozbay U. and Tektas H.A. (2006): Robust tracking control of kinematically redundant robot manipulators subject to multiple self-motion criteria. – In Proc. IEEE Control Appl., pp.2860-2865.
- [23] Ozbay U., Sahin H.T. and Zergeroglu E. (2008): Robust tracking control of kinematically redundant robot manipulators subject to multiple self-motion criteria. – Robotica, vol.26, No.06, pp.711-728.
- [24] Singh H.P. and Sukavanam N. (2012): Neural network based control scheme for redundant robot manipulators subject to multiple self-motion criteria. – Mathematical and Computer Modelling, vol.55, No.3, pp.1275-1300.
- [25] Nandhakumar S., Muthukumaran V., Prakash, K.S. and Shunmughanaathan V.K. (2015): Position control of industrial robotic manipulator using variable structure control system with single term Haar wavelet series method. – Journal of Vibration and Control, vol.21, No.12, pp.2465-2483.
- [26] Green A. Sasiadek J.Z. (2004): Dynamics and trajectory tracking control of a two-link robot manipulator. – Journal of Vibration and Control, vol.10, No.10, pp.1415-1440.
- [27] Seraji H. and Colbaugh R. (1990): Improved configuration control for redundant robots. – J. Robot. Syst., vol.7, No.6, pp.897-928.
- [28] Peng Z.X. and Adachi N. (1993): Compliant motion control of kinematically redundant manipulators. – IEEE Trans. Robot. Automat., vol.9, No.6, pp.831-836.
- [29] Ott C., Dietrich A. and Schaffer A.A. (2015): Prioritized multi-task compliance control of redundant manipulators. – Automatica, vol.53, pp.416-423.
- [30] Oh Y. and Chung W.K. (1999): Disturbance observer based motion control of redundant manipulators using inertially decoupled dynamics. – IEEE/ASME Trans. Mechatronics, vol.4, No.2, pp.133-146.
- [31] Colbaugh R. and Glass K. (1995): Robust adaptive control of redundant manipulators. – J. Intell. Robot. Syst., vol.14, No.1, pp.69-88.
- [32] Balleieul J. (1985): Kinematic programming alternatives for redundant manipulators. – In Proc. IEEE Int. Conf. on Robotics and Automation, vol.2, pp.722-728.
- [33] Shamir T. and Yomdin Y. (1988): Repeatability of redundant manipulators: Mathematical solution of the problem. – IEEE Trans. Automat. Cont., vol.33, No.11, pp.1004-1009.
- [34] Roberts R.G. and Maciejewski A.A. (1992): Nearest optimal repeatable control strategies for kinematically redundant manipulators. – IEEE Trans. Robot. Automat. vol.8, No.3, pp.327-337.
- [35] Spong M.W. and Vidyasagar M. (1989): Robot Dynamics and Control. – New York: Wiley.
- [36] Haessing D. and Friedland B. (1991): On the modeling and simulation of friction. – Transactions of the ASME, Journal of Dynamic Systems, Measurements and Control, vol.113, No.3, pp.354-362.
- [37] Wit C., Ollson H., Astrom K. and Lischinsky P. (1995): A new model for control of systems with friction. – IEEE Trans. Automat. Contr., vol.40, No.3, pp.419-425.
- [38] Yoshikawa T. (1985): Manipulability of robotic mechanisms. – Int. J. Robotics Res., vol.4, No.2, pp.3-9.
- [39] Maciejewski, A.A. and Klein C.A. (1985): Obstacle avoidance for kinematically redundant manipulators in dynamically varying environments. – I. J. Rob. Res., vol.4, No.3, pp.109-117.
- [40] Perdereau V., Passi, C. and Drouin, M. (2002): Real-time control of redundant robotic manipulators for mobile obstacle avoidance. – Robotics and Autonomous Systems, vol.41, No.1, pp.41-59.
- [41] Cruse H. et al. (1990): On the cost functions for the control of the human arm movement. – Biological Cybernetics, vol.62, No.6, pp.519-528.
- [42] Feng Y., Yu, X., and Man Z. (2002): Non-singular terminal sliding mode control of rigid manipulators. – Automatica, vol.38, No.12, pp.2159-2167.
- [43] Yu S., Yu X., Shirinzadeh B. and Man Z. (2005): Continuous finite-time control for robotic manipulators with terminal sliding mode. – Automatica, vol.41, No.11, pp.1957-1964.
- [44] Zhao D., Li S. and Gao F. (2009): A new terminal sliding mode control for robotic manipulators. – International Journal of Control, vol.82, No.10, pp.1804-1813.
- [45] Galicki M. (2016): Constraint finite-time control of redundant manipulators. – Int. J. Robust. Nonlinear Control, http://dx.doi.org/10.1002/rnc.3591.
- [46] Bartolini G., Ferrara A. and Punta E. (2000): Multi-input second-order sliding-mode hybrid control of constrained manipulators. – Dynamics and Control, vol.10, No.3, pp.277-296.
- [47] Bartolini G., Ferrara A., Usai E. and Utkin V.I. (2000): On multi-input chattering-free second-order sliding mode control. – IEEE Transactions on Automatic Control, vol.45, No.9, pp.1711-1717.
- [48] Bartolini G., Pisano A., Punta E. and Usai E. (2003): A survey of applications of second-order sliding mode control to mechanical systems. – International Journal of Control, vol.76, No.9-10, pp.875-892.
- [49] Ferrara A. and Capisani L.M. (2011): Second order sliding modes to control and supervise industrial robot manipulators. – In. L. Fridman et al. (Eds.): Sliding modes, LNCIS, Lecture Notes in Control and Information Sciences, vol.412, pp.541-567.
- [50] Wolovich W.A. and Elliot H. (1984): A computational technique for inverse kinematics. – In Proc. 23rd IEEE Conference on Decision and Control, pp.1359-1363.
- [51] Siciliano B. (1990): A closed-loop inverse kinematic scheme for on-line joint-based robot control. – Robotica, vol.8, No.3, pp.231-243.
- [52] Kelly R. (1996): Robust asymptotically stable visual servoing of planar robots. – IEEE trans. Rob. Automat., vol.12, No.5, pp.759-766.
- [53] Cheah C.C. (2006): On duality of inverse Jacobian and transpose Jacobian in task-space regulation of robots. – In Proc. IEEE Int. Conf. on Robotics and Automation, pp.2571-2576.
- [54] Cheah C.C., Lee K., Kawamura S. and Arimoto S. (2000): Asymptotic stability control with approximate Jacobian matrix and its application to visual servoing. – In Proc. IEEE Decision and Control, pp.3939-3944.
- [55] Moosavian S.A.A. and Papadopoulos E. (2007): Modified transpose Jacobian control of robotic systems. – Automatica, vol.43, No.7, pp.1226-1233.
- [56] Canudas de Wit C., Fixot N. and Astrom K.J. (1992): Trajectory tracking in robot manipulators via nonlinear estimated state feedback. – IEEE Trans. Robot. Automat., vol.8, No.1, pp.138-144.
- [57] ElBeheiry E.M., Zaki A. and ElMaraghy W.H. (2003): A unified approach for independent manipulator joint acceleration control and observation. – ASME Dynamic Systems and Control Division, vol.72, No.1, pp.659-666.
- [58] Khalil H.K. and Praly L. (2014): High-gain observers in nonlinear feedback control. – Int. J. Robust and Nonlinear Control, vol.24, No.6, pp.993-1015.
- [59] Ball A.A. and Khalil H.K. (2013): A nonlinear high-gain observer for systems with measurement noise. – IEEE Trans. Automat. Control, vol.58, pp.569-580.
- [60] De Luca A., Schroder D. and Thummel M. (2007): An acceleration-based state observer for robot manipulators with elastic joints. – In Proc. IEEE International Conference on Robotics and Automation, pp.3817-3823.
- [61] Hsiao T. and Weng M.C. (2013): Robust joint position feedback control of robot manipulators. – J. Dynam. Syst., Measurement, and Control, 135.
- [62] Davila J., Fridman L. and Levant A. (2005): Second-order sliding mode observer for mechanical systems. – IEEE Trans. Automat. Control, vol.50, No.11, pp.1785-1789.
- [63] Atasi A.N. and Khalil H.K. (2000): Separation results for the stabilization of nonlinear systems using different high-gain observer designs. – Systems and Control Letters, vol.39, No.3, pp.183-191.
- [64] Levant A. and Livne M. (2012): Exact differentiation of signals with unbounded higher derivatives. – IEEE Transactions on Automatic Control, vol.57, No.4, pp.1076-1080.
- [65] Levant A. (2003): Higher-order sliding modes, differentiation and output-feedback control. – International Journal of Control, vol.76, No.9-10, pp.924-941.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1dd07796-3eac-4684-90df-0ad35cc9e73d