PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An efcient multiparameter acoustic anisotropic full-waveform inversion depending on parameterization

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The pressure-based acoustic approximation of the elastic wave equations in anisotropic media has advantages corresponding to computational efciency and numerical stability. However, the numerical scattering potentials from the anisotropic parameter perturbations for the pressure wavefeld are not consistent with the elastic scattering theory. In multiparameter full-waveform inversion (FWI), choosing a suitable parameterization, considering the acquisition parameters (e.g., the ofsetto-depth ratio and frequency band) and the accuracy of the anisotropy information in the background initial velocity model, is an important component to a successful anisotropic parameter estimation, because the parameterization determines the trade-of between inverted model parameters and their resolution power. However, because it is difcult to perform multiparameter FWI with various types of parameterization using the pressure-based acoustic wave equation, inaccurate scattered wavefelds cause the gradient direction to lose its unique properties with respect to each model parameter. To overcome these issues, we adopt the combination of pressure- and vector-based acoustic wave equations converted vector virtual sources, which preserves the computational efciency and the angular dependency of the partial derivative wavefelds in elastic media. With the proposed method, we generate the numerical PP scattering patterns for various parameterizations, which are consistent with the elastic scattering theory. Through the numerical tests using the synthetic anisotropic Marmousi-II models and a real ocean bottom cable dataset from the North Sea, we conduct acoustic FWI with three diferent parameterizations using the proposed method and verify that the modifed scattering patterns accurately refect the characteristics of the anisotropic parameter perturbations.
Czasopismo
Rocznik
Strony
1257--1267
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
  • Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources, 124, Gwahak-ro, Yuseong-gu, Daejeon 34132, Republic of Korea
autor
  • Department of Mineral Resources and Energy Engineering, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
autor
  • Department of Energy Systems Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
  • Research Institute of Energy and Resources, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
Bibliografia
  • 1. Alkhalifah T (2000) An acoustic wave equation for anisotropic media. Geophysics 65:1239–1250. https://doi.org/10.1190/1.1444815
  • 2. Alkhalifah T (1997) An anisotropic marmousi model. SEP-95: Stanford Exploration Project:265–282
  • 3. Alkhalifah T, Tsvankin I (1995) Velocity analysis for transversely isotropic media. Geophysics 60:1550–1566. https://doi.org/10.1190/1.1443888
  • 4. Alkhalifah T (2016) Research note: Insights into the data dependency on anisotropy: An inversion prospective. Geophys Prospect 64:505–513. https://doi.org/10.1111/1365-2478.12345
  • 5. Červený V (2005) Seismic ray theory. Cambridge University Press, Cambridge
  • 6. Duveneck E, Milcik P, Bakker PM, Perkins C (2008) Acoustic VTI wave equations and their application for anisotropic reverse-time migration. SEG Tech Program Expanded Abstr. https://doi.org/10.1190/1.3059320
  • 7. Gholami Y, Brossier R, Operto S, Ribodetti A, Virieux J (2013a) Which parameterization is suitable for acoustic vertical transverse isotropic media full waveform inversion? Part 1: Sensitivity and trade-off analysis. Geophysics 78:R81–R105. https://doi.org/10.1190/geo2012-0204.1
  • 8. Gholami Y, Brossier R, Operto S, Ribodetti A, Virieux J (2013b) Which parameterization is suitable for acoustic vertical transverse isotropic full waveform inversion? Part 2: Synthetic and real data case studies from Valhall. Geophysics 78:R107–R124. https://doi.org/10.1190/geo2012-0203.1
  • 9. Kamath N, Tsvankin I, Díaz E (2017) Elastic full-waveform inversion for VTI media: a synthetic parameterization study. Geophysics 82:C163–C174. https://doi.org/10.1190/geo2016-0375.1
  • 10. Komatitsch D, Martin R (2007) An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation. Geophysics 72:SM155–SM167. https://doi.org/10.1190/1.2757586
  • 11. Lailly P (1983) As a sequence of before stack migrations. Conference on inverse scattering. Theory and Application 11: 206
  • 12. Oh JW, Alkhalifah T (2016) Elastic orthorhombic anisotropic parameter inversion: an analysis of parameterization. Geophysics 81:C279–C293. https://doi.org/10.1190/geo2015-0656.1
  • 13. Oh JW, Alkhalifah T (2018) Optimal full-waveform inversion strategy for marine data in azimuthally rotated elastic orthorhombic media. Geophysics 83:R307–R320. https://doi.org/10.1190/geo2017-0762.1
  • 14. Oh JW, Shin Y, Alkhalifah T, Min DJ (2020) Multistage elastic full-waveform inversion for tilted transverse isotropic media. Geophys J Int 223:57–76. https://doi.org/10.1093/gji/ggaa295
  • 15. Plessix RÉ (2006) A review of the adjoint-state method for computing the gradient of a functional with geophysical applications. Geophys J Int 167:495–503. https://doi.org/10.1111/j.1365-246X.2006.02978.x
  • 16. Plessix RÉ, Cao Q (2011) A parametrization study for surface seismic full waveform inversion in an acoustic vertical transversely isotropic medium. Geophys J Int 185:539–556. https://doi.org/10.1111/j.1365-246X.2011.04957.x
  • 17. Pratt RG, Shin C, Hicks GJ (1998) Gauss-Newton and full Newton methods in frequency domain seismic waveform inversion. Geophys J Int 133:341–362. https://doi.org/10.1046/j.1365-246X.1998.00498.x
  • 18. Shin Y, Oh JW, Kim S, Min DJ (2019) Mono-component multiparameter acoustic full waveform inversion in vertically transverse isotropic media using converted vector wavefields. J Appl Geophys 170:103816. https://doi.org/10.1016/j.jappgeo.2019.07.010
  • 19. Tarantola A (1984) Inversion of seismic reflection data in the acoustic approximation. Geophysics 49:1259–1266. https://doi.org/10.1190/1.1441754
  • 20. Thomsen L (1986) Weak elastic anisotropy. Geophysics 51:1954–1966. https://doi.org/10.1190/1.1442051
  • 21. Virieux J, Operto S (2009) An overview of full-waveform inversion in exploration geophysics. Geophysics 74:WCC1–WCC26. https://doi.org/10.1190/1.3238367
  • 22. Wu Z, Liu H, Alkhalifah T (2018) Pure Quasi-P-wave calculation in transversely isotropic media using a hybrid method. Geophys J Int 214:421–429. https://doi.org/10.1093/gji/ggy151
  • 23. Xu S, Zhou H (2014) Accurate simulations of pure quasi p-waves in complex anisotropic media. Geophysics 79:T341–T348. https://doi.org/10.1190/geo2014-0242.1
  • 24. Xu S, Tang B, Mu J, Zhou H (2015) Elliptic decomposition of quasi-P wave equation. EAGE Tech Program Ext Abstr. https://doi.org/10.3997/2214-4609.201413134
  • 25. Zhou H, Zhang G, Bloor R (2006) An anisotropic acoustic wave equation for VTI media. EAGE Tech Program Ext Abstr. https://doi.org/10.3997/2214-4609.201402310
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1dcddc5a-bb41-4fa6-ae33-f67209c2e565
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.