PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Operational tests of coating systems in military technology applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents an analysis of the functional operational properties of multilayer coatings for use in military technology in the field of masking. The developed coating systems are characterized by operational innovationdue to their small thickness when compared to those currently used by global defence contractors while maintaining the re-emission coefficient required for camouflage to be effective in the optical range. Their service life and durability were assessed in terms of functional properties based on measurements of attenuation coefficients, surface geometric structure, adhesion, specular gloss and colour parameters. The tests were carried out for coating systems fabricated in five variants: a two-layer paint system (SP1), a three-layer paint system (SP2), a laser-modified three-layer paint system (SP3) and a four-layer paint system in two variants (SP4 and SP5), with the former being modified with carbon nanotubes and the later with spherical iron. Coating systems are characterized by low roughness and good adhesion and have appropriate attenuation coefficients for radar waves. Due to their operational properties, the developed coating systems can be used on armaments and military equipment.
Rocznik
Strony
art. no. 12
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr.
Twórcy
  • Faculty of Mechatronics and Mechanical Engineering,Kielce University of Technology, 25-314 Kielce,Poland
  • F.H. Barwa, 25-253 Kielce, Poland
  • Military Institute of Engineer Technology,50-961 Wrocław,Poland
  • Military Institute of Engineer Technology,50-961 Wrocław,Poland
  • Military Institute of Engineer Technology,50-961 Wrocław,Poland
  • Military Institute of Engineer Technology,50-961 Wrocław,Poland
Bibliografia
  • 1. Alenkowicz H, Levitas B. Measurement of complex permittivity and complex permeability of materials. 12th International Conference on Microwaves and Radar. MIKON -98, Cracow, Poland, 20-22.05.1998: 668-672 (no paper link available).
  • 2. Ašmontas S, Kiprijanovič O, Levitas B, Matuzas J, Naidionova I. Estimation of electrical properties of hidden objects using microwave signals. Materials Science 2014; 2(20): 232-234, https://doi.org/10.5755/j01.ms.20.2.6331.
  • 3. Balakrishnan P, John MJ, Pothen L, Sreekala MS, Thomas S. Natural fibre and polymer matrix composites and their applications in aerospace engineering. Book: Advanced Composite Materials for Aerospace Engineering. Woodhead Publishing Limited, Duxford -Cambridge -Kidlington 2016: 365-383, https://doi.org/10.1016/B978-0-08-100037-3.00012-2.
  • 4. Burakowski T. Areologia-podstawy teoretyczne. Wydawnictwo Naukowe Instytutu Technologii Eksploatacji –PIB, Radom 2013 (no paper link available).
  • 5. Bury M. Obrazowanie obiektów na podstawie wielopunktowej akwizycji mikrofalowych sygnałów szerokopasmowych. Rozprawa Doktorska, Politechnika Warszawska, Warszawa 2009 (no paper link available).
  • 6. Chrzanowski J, Gucma M, Jankowski S, Juszkiewicz W, Montewka J, Przywarty M. Urządzenia radarowe w praktyce nawigacyjnej. Seria Wydawnicza: Urządzenia Nawigacji Technicznej nr 1, Akademia Morska w Szczecinie, Szczecin 2010 (no paper link available).
  • 7. Chung DDL. Materials for electromagnetic interference shielding. Materials Chemistry and Physics 2020; 255: Article 123587, https://doi.org/10.1016/j.matchemphys.2020.123587.
  • 8. Frank F, Tkadletz M, Czettl C, Schalk N. Microstructure and mechanical properties of ZrN, ZrCN and ZrC coatings grown by Chemical Vapor Deposition. Coatings 2021; 11: Article 491,https://doi.org/10.3390/coatings11050491.
  • 9. Jayalakshmi CG, Inamdar A, Anand A, Kandasubramanian B. Polymer matrix composites as broadband radar absorbing structures forstealth aircrafts. Journal of Applied Polymer Science 2019; 136: Article 47241, https://doi.org/10.1002/app.47241.
  • 10. Kotnarowska D. Analysis of polyurethane top-coat destruction influence on erosion kinetics of polyurethane-epoxy coating system. Eksploatacja i Niezawodnosc-Maintenance and Reliability 2019; 1(21): 103-114, http://dx.doi.org/10.17531/ein.2019.1.12.
  • 11. Kotnarowska D. Powłoki ochronne. Wydawnictwo Politechniki Radomskiej, Radom 2010 (no paper link available).
  • 12. Kowalski S. The influence of selected PVD coatings on fretting wear in a clamped joint based on the example of a rail vehicle wheel set. Eksploatacja i Niezawodnosc-Maintenance and Reliability 2018; 1(63): 1-8, https://DOI:10.17531/EIN.2018.1.1.
  • 13. Kozłowska A. Węzłowe zagadnienia naukowe i techniczne warunkujące rozwój technologii powłok ochronnych w XX wieku. Instytut Mechaniki Precyzyjnej, Warszawa 1987 (no paper link available).
  • 14. Kumar N, Vadera SR. Stealth Materials and Technology for Airborne Systems. Book: Aerospace Materials and Material Technologies. Volume 1: Aerospace Materials. Springer, Singapore 2017: 519-537, https://DOI:10.1007/978-981-10-2134-3.
  • 15. Lazaro A, Girbau D, Villarino R. Analysis of vital signs monitoring using an IR-UWB Radar. Progress in Electromagnetics Research 2010; 100: 265-284, https://DOI: 10.2528/PIER09120302.
  • 16. Levitas B, Matuzas J. UWB radar high resolution ISAR imaging. Second International Workshop Ultrawideband and Ultrashort Impulse Signals (IEEE Cat. No.04EX925) 204: 231-233 (no paper link available).
  • 17. Malshe VC, Sangaj N. Fluorinated acrylic copolymersPart I: Study of clear coatings. Progress in Organic Coatings 2005; 53: 207-211, https://doi:10.1016/j.porgcoat.2005.03.003.
  • 18. Mokrzycki WS, Tatol M. Color, difference Delta E - A survey. Machine Graphics and Vision 2011; 20: 383-411 (no paper link available).
  • 19. Mouritz AP. Introduction to aerospace materials. Book: Introduction to Aerospace Materials. Woodhead Publishing Limited, Oxford -Cambridge -Philadelphia -New Delhi 2012: 1-14 (no paper link available).
  • 20. OndrejkaAR, KandaM. A time-domain method for measuring the reflection coefficient of microwave absorbers at frequencies below 1 GHz. Antennas and Propagation Society Symposium Digest(IEEE -INSPEC Accession Number:4239209) 1991: 1656-1659(no paper link available).
  • 21. Pasieczyński Ł, Radek N, Radziszewska-Wolińska J. Operational propertiesof anti-graffiti coating systems for rolling stock. Advances in Science and Technology Research Journal 2018; 1(12): 127-134, https://DOI:10.12913/22998624/85705.
  • 22. Plebankiewicz I, Mazurczuk R, Szczodrowska B. Selection and verification of camouflage colours. Materials Research Proceedings 2020; 17: 79-85, https://DOI: 10.21741/9781644901038-12.
  • 23. EN ISO 2813:2014 Paints and varnishes - Determination of gloss value at 20 degrees, 60 degrees and 85 degrees.
  • 24. EN ISO 4624:2016Paints and varnishes - Pull-off test for adhesion.
  • 25. EN ISO 7724-1:2003Paints and varnishes – Colorimetry -Part 1: Principles.
  • 26. EN ISO 7724-2:2003 Paints and varnishes – Colorimetry -Part 2: Colour measurement.
  • 27. EN ISO 7724-3:2003 Paints and varnishes – Colorimetry -Part 3: Calculation of colour differences.
  • 28. Norma Obronna NO-10-A208:2014/NO-10-A208:2014/A1:2020 - Pokrycia ikomplety maskujące. Wymagania ogólne.
  • 29. Norma Obronna NO-80-A200:2021 -Farby specjalne do malowania maskującego. Wymagania i metody badań.
  • 30. Przybył W, Mazurczuk R, Szczepaniak M, Radek N, Michalski M. Virtual methods of testing automatically generated camouflage patterns created using cellular automata. Materials Research Proceedings 2022; 24: 69-77, https://DOI: 10.21741/9781644902059-11.
  • 31. Przybył W, Radosz W, Januszko A. Colour management system: Monte Carlo implementation for camouflage pattern generation. Coloration Technology 2020; 136: 407-416, https://doi.org/10.1111/cote.12483.
  • 32. Radek N, Szczotok A, Gądek-Moszczak A, Dwornicka R, Bronček J. Pietraszek J. The impact of laser processing parameters on the propertiesof electro-spark deposited coatings. Archives of Metallurgy and Materials 2018; 2(63): 809-816, https://DOI: 10.24425/122407.
  • 33. Radek N. Determining the operational properties of steel beaters after electrospark deposition. Eksploatacja i Niezawodność -Maintenance and Reliability 2009; 4(44): 10-16 (no paper link available).
  • 34. Selvakumar N, Barshilia HC, Rajam KS. Effect of substrate roughness on the apparent surface free energy of sputter deposited superhydrophobic polytetra-fluoroethylene coatings: A comparison of experimental data with different theoretical models. Journal of Applied Physics 2010; 108: Article 013505, https://doi.org/10.1063/1.3456165.
  • 35. Świderski A, Jóźwiak A, Jachimowski R.Operational quality measures of vehicles applied for the transport services evaluation using artificial neural networks. Eksploatacja i Niezawodność -Maintenance and Reliability 2018; 2(20): 292-299, https://DOI:10.17531/ein.2018.2.16.
  • 36. Świderski A, Borucka A, Grzelak M, Gil L. Evaluation of machinery readiness using Semi-Markov processes. Applied Sciences 2020; 10: Article1541, https://doi:10.3390/app10041541.
  • 37. Toh KB, Todd P. Camouflage that is spot on! Optimization of spot size in prey-backgroundmatching. Evolutionary Ecology2017; 31: 447-461, https://DOI 10.1007/s10682-017-9886-3.
  • 38. Tyrawa P, Kałuski M. Procedury wzorcowania anten pomiarowych. Telekomunikacja i techniki informacyjne 2005; 1-2: 96-115 (no paper link available).
  • 39. Wang D, Zhang B, Jia CC, Gao F, Yu Y, Zhao X, Bai Z. Microstructure and tribological properties of plasma-sprayed WC-17Co coatings with different carbide grain size distribution. Journal of the Japan Society of Powder and Powder Metallurgy 2016;63(7): 688-696, https://doi.org/10.2497/jjspm.63.688.
  • 40. Wang H,Qiu Q, Gee M, Hou C, Liu X, Song X. Wear resistance enhancement of HVOF-sprayed WC-Co coating by complete densification of starting powder. Materials & Design2020; 191: Article 108586, https://doi.org/10.1016/j.matdes.2020.108586.
  • 41. Wysocki K, Dąbrowska I, Idziek M. Maskowanie wojsk i obiektów na przykładzie doświadczeń wybranych państw. Akademia Sztuki Wojennej, Warszawa 2020 (no paper link available).
  • 42. Yang X, Xu W, Liu J, Jia Q, Liu H, Ran J, Zhou L, Zhang Y, Hao Y, Liu C. A small-spot deformation camouflage design algorithmbased on background texture matching. Defence Technology 2021; 13 October: 1-10, https://doi.org/10.1016/j.dt.2021.10.001.
  • 43. Zhang P, Pang Y, Yu M. Effects of WC particle types on the microstructuresand properties of WC-reinforced Ni60 composite coatings produced by laser cladding. Metals 2019; 9: Article 583, https://doi.org/10.3390/met9050583.
  • 44. https://www.geozondas.lt/list/Seminaras%20Lietuva-Baltarusija.pdf[on-line access 07.09.2022].
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1dc9b03e-e024-4939-bee5-eba1d35721b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.