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1.	 Introduction

Shewhart control charts are an essential tool for quality control in the context 
of supervising the processes of production. These charts, introduced by Shewhart 
(1931), are essentially based on the interpretation of mean, standard deviation, 
and range of samples obtained from production processes.

Control charts try to determine whether processes are still under control. 
A classic example is the xS-chart, which assumes that the quantity that is to be 
controlled follows a normal distribution. In this case, the x-chart monitors the 
process mean and checks whether the controlled sample values lie between two 
acceptance boundaries. Additionally, the S-chart checks if the x-chart’s boundar-
ies are still represented by the variance of the monitored process and shows off 
limits in which the process variance can vary without being classified as changed. 
Here, S is the sample standard deviation, defined as:

	
( )

( )=

-
=

-∑
2

1 1

n
i

i

X X
S

n 	 (1)

Burr (1967) analyzed the suitability of x-chart’s boundaries for samples drawn 
from non-normal parent populations. His results showed that the usual boundar-
ies are still reliable if the sample’s distribution does not deviate too much from 
the normal distribution. In line with these results, Chan et al. (1988) concluded 
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that charts, which are designed for normal distributed data, do not work well if 
the underlying distribution has extremely heavy or light tails.

Next to this, Page (1954) and Ewan (1963) used a cumulative sum and Crowder 
(1987) an exponentially weighted moving average to supervise production pro-
cesses and demonstrated these methods’ advantages in case of small changes in 
the nature of the process.

More recent research by Riaz and Saghir (2007) as well as Saghir and Lin 
(2015) employed Gini’s mean difference for tracing the variability of production 
processes. They carved out situations in which a G-chart1 can detect changes in 
the variance of a process more efficiently than charts that are currently applied 
in supervision, like the previously explained, especially in situations in which the 
data’s distribution is not normal. 

We introduce a new class of control charts, the f-chart, which is a generaliza-
tion based on a new class of entropy, the cumulative paired f-entropy (CPEf), as 
introduced by Klein et al. (2016). The CPEf contains many classes of well-known 
entropies such as the cumulative (residual) entropy and the differential entropy. 
We generalize the results of Riaz and Saghir (2007) and Saghir and Lin (2015) as 
follows. First, a class of f-charts is introduced that inherits the G-chart as a special 
case. Second, two new control charts are introduced that can be of advantageous 
use as a control chart in situations in which a sample of the process is not drawn 
from a normal population.

This paper is organized as follows: At the beginning, we introduce the G-chart 
by Riaz and Saghir (2007) and Saghir and Lin (2015). Then we introduce the 
new class of f-charts.2 Section 3 compares the f-charts to the established S- and 
G-charts in a showcase scenario. Section 4 summarizes and discusses our findings.

2.	 Methods

Throughout this paper, we analyze methods to monitor the variability of 
a process. Information about location is not the focus of this research. Therefore, 
we assume in the following that any sample mean values lie in their control limits, 
meaning that the process location is under control.

Control limits for the variability of a sample with n observations are defined as:

	 Lower Control Limit, 
,

2
n

LCL q a= s
	

(2)

	 1	The G-chart is a control chart based on Gini’s mean difference.
	 2	Note that we will not provide an analysis with respect to the R-chart, which is based on ranks of 

a sample. This decision is based on the finding of Riaz and Saghir (2007), who showed that the 
R-chart is either dominated by one, the S- or the G-chart.



57

Introduction of a general class of entropy-based control charts: The Φ-chart

	 Upper Control Limit, 
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LCL q a-
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(3)

If the population’s standard deviation s is unknown, it can be replaced by 
an unbiased estimator ŝ in the case of a normal distribution. The quantiles qa are 
obtained from a Monte Carlo simulation, since exact distributions can be difficult 
to determine for finite n3.

2.1.	 G-chart

A G-chart is based on Gini’s mean difference measure:
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David (1968) showed, that ( )/2 Gπ  is an unbiased estimator for the true 
underlying process variability. Saghir and Lin (2015) analyzed the performance 
of G-charts under several violations of assumptions as non-normality and shifts 
in the standard deviation of the process.

2.2.	 φφ-chart

Klein et al. (2016) introduced a new kind of entropy whose special cases have 
been used in a variety of fields of research, such as Fuzzy set theory (c.f. Luca, Ter-
mini 1972), Uncertainty theory (c.f. Liu 2015), and Reliability theory (c.f. Ebrahimi 
1996). This new class of entropy, cumulative paired f-entropy (CPEf), is based 
on an absolute continuous probability distribution function F. For every concave 
function f with f(0) = f(1) = 0, the CPEf is defined as: 

	 ( ) ( )( ) ( )( )f = f + f -∫ 1CPE F F x F x dx
R

	 (5)

f is called entropy generating function. Next, we use the following four CPEf as 
measures of variability resulting in four f-charts:

1.	 Cumulative paired Leik entropy (CPEL, following Leik 1966) is generated by

	 ( ) }{ [ ]f = - = - - ∈1 1,1 ,  0,1
2 2

u min u u u u 	 (6)

	 3	See Riaz and Saghir (2007) for further details on the critical values for S- and G-charts under nor-
mality.
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which results in: 

	 ( ) ( ) ( ){ }= -∫2 ,1LCPE F min F x F x dx
R

	 (7)

2.	 Cumulative paired a-entropy (CPEa, following Havrda, Charvát 1967) is 
generated by:

	 ( ) [ ]
a- -f = ∈ a >

- a

1 1 ,  0,1   and   1
1

uu u u 	 (8)

which results in:
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3.	 Cumulative paired Shannon entropy (CPES, following Burbea, Rao 1982) is 
generated by:

	 ( ) [ ]f = - ∈ln ,  0,1u u u u 	 (10)

which results in:

	 ( ) ( ) ( ) ( )( ) ( )( )( )= - + - -∫ ln 1 ln 1SCPE F F x F x F x F x dx
R

	 (11)

The CPES is a special case of CPEa for a → 1.

4.	 Cumulative paired Gini entropy (CPEG), which is a special case of CPEa for 
a = 2, results in:

	 ( ) ( ) ( )( )= -∫2 1GCPE F F x F x dx
R

	 (12)

As described by Klein et al. (2016), G = 4CPEf. Therefore, G-charts can be 
generalized to a-charts or even more general f-charts, that contain the G-chart 
as a  special case. See Klein et al. (2016) for more information about the esti
mation of CPEf.

We compare these generalizations to the established results in literature in 
the next section.
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3.	 Results

Following Riaz and Saghir (2007) and Saghir and Lin (2015), we evaluate the 
charts’ performance via a simulation study. For simulating the required quantiles 
for the control limit, we use a Monte Carlo simulation with 2,000,000 random 
samples of size n = 6 and a significance level of 1% reference case. Table 1 gives 
an overview on the probability distributions used throughout the simulation. The 
distributions were chosen based on their potential relevance for various process 
control settings. For the normal, logistic, Laplace, and exponential distribution, 
a standardizing parametrization is used. We choose n = 5 degrees of freedom for 
the Student’s t-distribution for modelling heavy tails, while ensuring the existence 
of the first four moments (mean, variance, skewness, and kurtosis).

Table 1
Density functions of the analyzed probability distributions

Distribution Density function Parameters

Normal
( )2

22

1 exp
22

x - m
 -

s πs  
m = 0, s = 1

Student’s t
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2 2

1
2 1

2

x
n+-

n + Γ     + nn   nπΓ 
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 n = 5

Logistic

- m - s 
 - m s + -  s  
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 - qΓ t q  
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Laplace 1 exp
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m = 0, b = 1

Exponential ( )exp xl -l  l = 1
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3.1. 	 Evaluation metric

Following Saghir and Lin (2015), we use the average run length (ARL) as the 
performance criterion for the suitability of the proposed charts in several scenarios. 
It can be interpreted as the average required number of observations from the 
process until an out-of-control situation is detected. The ARL is a transformation 
of the testing procedure’s power and defined as 1/(1 - b). Here, b is the prob-
ability of a  type II error and 1 - b is the power of a  test. Conclusively, a high 
power translates into a high probability of identifying out-of-control situations. 
We distinguish between ARL0 (run length when a process is under control) and 
ARL1 (run length when a process is not under control). For a suitable chart, ARL0 
must be large  – since an alarm would be a wrong decision  – and ARL1 must be 
small  – to detect out-of-control situations as quickly as possible. The ARL values 
that are displayed in the following are the results of a Monte Carlo experiment 
with 200,000 repetitions.

The reference standard deviation s for each distribution is defined by the 
corresponding parameters in Table 1. The violation of the process’ assumptions 
is implemented by shifting the reference standard deviation for each distribu-
tion from s to ks with k > 0. Furthermore, we change the actual distribution of 
the process, implemented by using one of the other 5 distributions from Table 1 
instead of the Gaussian distribution.

3.2.	 Performance of φφ-charts

α-charts for α = 2
First, we are interested in analyzing the close surrounding of the special 

case a = 2. We compared ARL0 and ARL1. As it turns out, there is no relevant 
improvement in neither ARL0 or ARL1 from using the G-chart4 to any value  
a ≠ 2, neither if the variance increases while the distribution remains Gaussian 
nor if other distributions from Table 1 are applied. Figure 1 illustrates this find-
ing exemplarily by showing the standardized ARL0 (a) and ARL1 (b) values of  
the a-charts (including the G-chart) as ratio with respect to the ARL0 and ARL1 
values of the S-charts  – for different values of a, for the Gaussian and the expo-
nential distribution.

	 4	The G-chart is an a-chart with a = 2.
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Figure 1. Ratios of ARL of a-charts for 1 < a < 2 and the ARL of S: a) ARL0 for standard 
Gaussian data; b) ARL1 of sample from exponential distribution with l = 0.625

We see that Figure 1 shows nearly no difference between the performance of 
a-charts and the S-charts for any value of a ∈ (1, 2]. This seems to be surprising 
at first glance  – a closer look at the entropy generating function f clarifies this 
finding. All of the functions weigh data points in a similar manner, the more they 
are located in the tails of a distribution. Since those observations are responsible 
for tremendous changes in variability, the detection of out-of-control situations by 
a-charts for any value of a is similar. The functional form of the CPEf’s integrand  
f(u) + f(1 - u) (see formula (5)) for different values of a is displayed in Figure 2. 
As we will see in the following subsection, more advantageous behavior of  
a f-chart can only be expected if the shape of f(u) + f(1 - u) varies considerably, 
as with the Leik-chart (see Figure 2b).

Figure 2. The integrands of: CPEa for a = 1.01, 2, 3 (a); CPES, CPEG, and CPEL (b)

a)

a)

b)

b)
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Shannon- and Leik-charts
In this subsection we analyze the ARL of charts that are based on the Leik 

entropy CPEL as well as on the Shannon entropy CPES. As can be seen from Fig-
ure 2, the integrands of the resulting CPEf have substantially different slopes in 
the tail regions. In the following, we take a closer look on how this affects the 
ARL of the associated f-charts. We use the Shannon-chart and the G-chart as rep-
resentatives of the a-charts, since the previous subsection showed very similar 
behavior referring different values of a.

At first, we evaluate the Leik- and Shannon-chart in the default setting, 
shifting the standard deviation of a Gaussian distribution. Figure 3 summarizes 
the ARL-values of G-charts in comparison to Shannon- and Leik-charts. All val-
ues are displayed relative to the respective ARL of the benchmarking S-chart. 
Results show that neither of the new f-charts outperforms the S-chart in the 
sense of a higher ARL0 or a lower ARL1. However, the ARL0 of the G-, Leik-, and 
Shannon-charts are not significantly different from values of the S-chart. All ARL1 
values converge as the multiplicative shift k of the standard deviation increases. 
However, the Leik-chart has difficulties detecting smaller shifts around k ∈ (1, 2]. 
In contrast to the S-chart, the Leik-chart needs up to 20% more observations to 
detect a shift in the process’ variance and is therefore not recommended for use 
in this particular scenario.

Figure 3. ARL ratios of CPES, CPEG, and CPEL for a standard Gaussian distribution  
where the standard deviations are multiplied by the shift-factor k.  

All ARL-values are reported as ratios compared to the ARL-value of the S-chart
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Nonetheless, we assume that there are situations in which the Leik-chart 
outperforms every other control chart. For this purpose, we analyze the f-chart’s 
behavior under several alternative families of distributions, which are summarized 
in Table 1. Figure 4 compares the Shannon-, G-, and Leik-chart at non-normal 
distributions. Again, all ARL-values are reported as ratios of the chart’s ARL 
compared to the ARL of the S-chart. Three results can be derived by interpreting 
the ratios of ARL-values. As the first result, it seems that for heavy tail symmetric 
distributions (excess kurtosis of 6), deviations can be detected similarly by any of 
the applied procedures. If the process is e.g., from a Student’s t-distribution with 
n = 5, extreme observations occur way more often as under a Gaussian distribu-
tion. In our simulation, the S-chart can detect such outliers very quickly, since 
an arbitrarily large value has an arbitrarily large effect on S which makes S very 
sensitive to outliers. However, in this scenario, the G-chart, as already discussed 
by Riaz and Saghir (2007), and the Shannon-chart perform similarly to the regu-
lar S-chart. Merely the Leik-chart needs about 5% more observations in order to 
detect an out-of-control process.

The second result is that at symmetric distributions with lighter tails than the 
t(5)-distribution5, all three charts (Shannon-, G-, Leik-chart) require less observa-
tions to detect an out-of-control process than the classical S-chart. Shannon- and 
G-chart perform similar, while both are dominated by the Leik-chart, which 
requires the lowest number of observations.

All three analyzed alternative distributions  – Student’s t, logistic, and Laplace 
distribution  – share one common feature. The larger the shift in variability, the 
more similar are Shannon-, G-, and Leik-charts to each other as well as they are 
to the S-chart. This convergence seems to be accelerated if the tails of the distri-
bution are heavy. 

The third result is that with increasing shift in the standard deviation at non-
symmetric distributions (see Figure 4d), the better the improvement achieved by 
using the Leik-chart compared to any other chart (up to 25% fewer observations 
needed on average to detect an out-of-control process). However, for large shift 
values this improvement seems to vanish as the ARL-curve converges to 1.

The exponential distribution, used as non-symmetric distribution, is com-
monly used for modeling waiting time in production processes, see e.g., Qiu (2013). 
Therefore, in the next subsection, we apply the Leik-chart to a more general fam-
ily of distributions with a half-bounded domain6 that contains the exponential 
family and as a special case, the gamma distribution.

	 5	That is e.g., the logistic or the Laplace distribution.
	 6	The real-valued probability density function of the gamma distribution is defined for x ∈ (0, ∞).
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a) ARL-ratios for samples from 
the Student’s t distribution with n = 5

b) ARL-ratios for samples from 
the standardized logistic distribution

c) ARL-ratios for samples from 
the standardized Laplace distribution

d) ARL-ratios for samples from 
the exponential distribution with l = 1

Figure 4. ARL ratios of the Shannon-, G-, and Leik-chart for the Student’s t (a), the logistic (b), 
the Laplace (c), and the exponential distribution (d). The standard deviations of each dis-
tribution are multiplied by the shift-factor k  – the horizontal axis displays the shift of the 
applied distributions (k = 1 refers to ARL0, k > 1 to ARL1). All ARL-values are reported as 

ratios compared to the ARL-value of the S-chart

3.3.	 -charts for the gamma distribution

In some situations, especially when some kind of waiting time is involved 
in a production process, the quantity of interest follows a gamma distribution  



65

Introduction of a general class of entropy-based control charts: The Φ-chart

(c.f. Zhang et al. 2007). The shape parameter t of a gamma distribution regulates 
the hazard rate  – one can distinguish between

t < 1: monotonically decreasing hazard rate, 
t = 1: constant hazard rate (exponential distribution), 
t > 1: monotonically increasing hazard rate. 

We showcase two parametrizations of the gamma distribution from Table 1 
covering both decreasing (t = 0.5, Figure 5a) as well as increasing (t = 2, Figure 5b) 
hazard rates.

As we can see in Figure 5, in case of monotonically increasing as well 
as decreasing hazard rates, the Leik-chart outperforms the S-chart by far in 
detecting out-of-control situations. The Leik-chart has an even lower ARL1 
value than the Shannon- or the G-chart (k > 1). It needs approximately 5–15% 
fewer observations to detect an out-of-control situation. All four control charts 
show a similar ARL0 value if the process’ standard deviation lies in between its  
boundaries (k = 1).

a) ARL-ratios for samples from 
the gamma distribution with t = 0.5

b) ARL-ratios for samples from 
the gamma distribution with t = 2

Figure 5. ARL ratios of the Shannon-, G-, and Leik-chart for the gamma distribution with 
shape parameter t = 0.5 (a) and t = 2 (b) for different shifts k

This promising result encourages us to apply the new control charts to an 
actual data set from a refrigerator production process.



66

Benedikt Mangold, Jens Konopik

3.4.	 Application to real data

In this subsection, we evaluate the S-, Shannon-, G-, and Leik-chart to a data 
set from Wild and Seber (2000), which contains the thickness of paint on refrigera-
tors for a sample of size n = 5 from 20 shifts of production. The first 15 shifts are 
set as training data and for the last 5 shifts (test data) a quality check is performed 
to determine whether or not the process is still under control. Table 2 lists all 
available data, normalized using the standard deviation from the first 15 shifts.

A goodness of fit test for the first 75 observations results in p-values of 0.4112 
for the gamma and 0.3073 for the Gaussian distribution. Therefore, we use the 
gamma distribution for determining the critical values of the control charts. 
Maximum likelihood estimation leads to parameters t = 78.8544 and q = 0.1102. 
After the training set, the control charts are initialized using simulated UCL and 
LCL based on 1,000,000 samples of size n = 5 at a level of 0.5%. Figure 6 lists the 
four resulting processes and the application to the 5 test shifts.

a) S-chart b) G-chart

c) Leik-chart d) Shannon-chart

Figure 6. S-, G-, Leik-, and Shannon-chart of the data set from Table 2. The first 15 shifts 
have been used to calibrate the control chart by estimating LCL and UCL. The charts are 
applied to the last 5 test shifts. Horizontal lines denote the UCL, the mean of the process, 

and LCL (top down). The red dashed line indicates an out-of-control situation
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Clearly, all four control charts detect an out-of-control situation in the shifts 
17 and 18, which would in practice result in a termination of the production pro-
cess. To strengthen the results from the Monte Carlo simulations of the previous 
sections, however, more data would be required together with the information 
of whether the process has actually been out-of-control or not.

4.	 Conclusions

Our results showed that the broad class of a-charts, containing the well-known 
G-chart as a special case for a = 2 as well as the Shannon-chart as a limiting case 
for a → 1, does not provide any improvement over the classical Shewhart control 
charts for values of a ≠ 2. The ARL of a-charts is very similar to the  ARL of the 
G-chart in the analyzed scenarios. One reason for this finding could be the almost 
equally shaped kernel functions of the underlying CPEa, which weigh observa-
tions in a similar manner.

However, we discovered that the usage of Leik control charts can be advanta-
geous compared to established Shewhart control charts if the underlying process 
follows an exponential, Laplacian, or gamma distributed law. Leik control charts 
are found to outperform both the classical S-chart and the G-chart if the variability 
of the process is out-of-control. Further research should focus on applying this 
Leik-chart to actual data from production processes following a gamma distri-
bution and investigate the economically advantageous implications of using this 
new f-chart compared to using a classical Shewhart control chart.

Furthermore, for processes which follow a distribution with domain R+ the 
analysis of the performance of a control chart that is based on the cumulative 
residual entropy (as in Wang et al. 2003), could be of interest for further research.
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Summary
We introduce a new class of Shewhart control charts, namely the f-chart. This new class is based 
on the cumulative paired f-divergence that generalizes both the cumulative (residual) entropy 
and the differential entropy. The f-chart contains several subclasses; of which one has a special 
case, the G-chart, which uses Gini’s mean difference as a measure of dispersion. We investigate 
the performance of three of the subclasses of f-charts in a showcase scenario, comparing its 
average run length under the Gaussian and several alternative distributions relevant for process 
control. We find especially the new Leik control chart to outperform classical Shewhart charts, 
which are based on ranks, standard deviation, or Gini’s mean difference. The results imply that 
monitoring a production process using f-charts results in a faster detection of out-of-control 
processes, which can be crucial for a variety of application areas.
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