PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of MIS equivalent electrical circuit of Au/Pd/Ti-SiO2-GaAs structure based on DLTS measurements

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper MIS equivalent electrical circuit of Au/Pd/Ti–SiO2–GaAs has been analyzed by a comparison of the results obtained from admittance and DLTS spectroscopy. Two groups of peaks with different magnitude and different gate voltage dependence have been observed in DLTS and admittance spectra. Based on the analysis of the peaks behavior, it has been concluded that they are associated with the response of bulk traps and interface states, respectively. In order to characterize bulk traps and interface states responsible for the occurrence of two groups of peaks in normalized conductance spectra we have used the equivalent circuit with two CPE-R branches. The time constant values estimated for both peaks from admittance analysis have been compared with the time constant determined from DLTS analysis. Some discrepancies have been noted between the time constants obtained for interface states whereas the time constants for bulk traps were compatible. It has been also demonstrated that when conductance peaks overlap, the admittance experimental data can be fitted by the equivalent electrical model with only one CPE-R branch. However, in this case incomplete information about the analyzed process has been obtained despite the fact that all model validity criteria can be fulfilled and the model seems to be correct.
Wydawca
Rocznik
Strony
446--453
Opis fizyczny
Bibliogr. 30 poz., tab., wykr.
Twórcy
autor
  • Institute of Physics, Silesian University of Technology, Krzywoustego 2, 44-100 Gliwice, Poland
autor
  • Institute of Physics, Silesian University of Technology, Krzywoustego 2, 44-100 Gliwice, Poland
autor
  • Wrocław University of Technology, Faculty of Microsystem Electronics and Photonics, Janiszewskiego 11, 50-372 Wrocław, Poland
  • Wrocław University of Technology, Faculty of Microsystem Electronics and Photonics, Janiszewskiego 11, 50-372 Wrocław, Poland
  • Wrocław University of Technology, Faculty of Microsystem Electronics and Photonics, Janiszewskiego 11, 50-372 Wrocław, Poland
Bibliografia
  • [1] CHENG C. W., APOSTOLOPOULOS G., FITZGERALD E. A., J. Appl. Phys., 109 (2011), 023714.
  • [2] ENGEL-HERBERT R., HWANG Y., STEMMER S., J.Appl. Phys., 108 (2010), 124101.
  • [3] HASEGAWA H., AKAZAWA M., DOMANOWSKA A., ADAMOWICZ B., Appl. Surf. Sci., 25 (2010), 5698.
  • [4] MARTENS K., WANG W., DE KEERSMAECKER K., BORGHS G., GROESENEKEN G., MAES H., Micr. Eng., 84 (2007), 2146.
  • [5] MARTENS K. et al., Solid-State Electronics, 51 (2007), 1101.
  • [6] BRAMMERTZ G. et al., J. Electrochem. Soc., 155 (2008), 12945.
  • [7] BRAMMERTZ G. et al., Appl. Phys. Lett., 91 (2007), 133510.
  • [8] HINKLE C. L., SONNET A. VOGEL M., M., Appl. Phys. Lett., 91 (2007), 163512.
  • [9] YANG T. et al., Appl. Phys. Lett., 91 (2007), 142122.
  • [10] HINKLE C. L. et al., Appl. Phys. Lett., 93 (2008), 113506.
  • [11] BRAMMERTZ G. et al., Appl. Phys. Lett., 93 (2008), 183504.
  • [12] DALAPATI G. K., TONG Y., LOH W-Y., MUN H. K., CHO M. J., MEMBER S., IEEE Trans. Electron Devices, 54 (2007), 9383.
  • [13] ZHENG J. F., TSAI W., LI W. P., WANG X. W., MA T. P., Appl. Phys. Lett., 92 (2008), 232904.
  • [14] NICOLLIAN E. H., BREWS J. R., MOS (Metal-Oxide-Semiconductor) Physics and Technology, Wiley, New Jersey, 2003.
  • [15] MACDONALD J. R., Impedance Spectroscopy, JohnWiley and Sons, 1987
  • [16] NITSCH K., Impedance Spectroscopy in the Investigation of Electronic Materials, Publishing House of Wroclaw Technical University, Wrocław, 1999, in Polish.
  • [17] KOCHOWSKI S., NITSCH K., Thin Solid Films, 415 (2002), 133.
  • [18] LANG D. V., J. Appl. Phys., 45 (1974), 3023.
  • [19] WANG K. L., EVWARAYE A. O., J. Appl. Phys., 47 (1976), 4574.
  • [20] SCHULZ M., JOHNSON N. M., Appl. Phys. Lett., 31 (1977), 622.
  • [21] GONG C., SIMOEN E., POSTHUMA N., VAN KERSCHAVER E., POORTMANS J., MERTENS R., Appl. Phys. Lett., 96 (2010), 103507.
  • [22] NAKANO Y., JIMBO T., Phys. Stat. Sol. (b), 234 (2002), 859.
  • [23] WANG Q. H., BOWSER M. I., SWANSON J. G., J. Appl. Phys., 76 (1994), 4209.
  • [24] SAWADA T., HASEGAWA H., Thin Solid Films, 56 (1979), 183.
  • [25] HASEGAWA H., SAWADA T., Thin Solid Films, 103 (1983), 119.
  • [26] MURRAY F., CARIN R., BOGDANSKI P., J. Appl. Phys., 60 (1986), 3592.
  • [27] YAMASAKI K., YOSHIDA M., SUGANO T., Jpn. J. Appl. Phys., 18 (1979), 113.
  • [28] SCHRODER D. K., Semiconductor Material and Device Characterization, Wiley and Sons, New York, 1990.
  • [29] MARTIN G. M., MITONNEAU A., MIRCEA A., Electron. Lett., 13 (1977), 191.
  • [30] BRUG G. J., VAN DEN EEDEN A. L. G., SLUYTERSREHBAH M., SLUYTERS J. H., J. Electroanal. Chem.,176 (1984), 275.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1db6d6ee-8f7a-421c-8588-0976c67d6f43
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.