PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Channeling analysis of wavelet threshold processing based on K-means clustering algorithm

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Through the spectrum noise logging technology, the oil field is dynamically monitored, and according to its simple logging instrument and convenient operation, the position of the outer channeling of the casing can be qualitatively judged by the abnormal noise of the measurement record, and the downhole production status of the water injection well can be accurately diagnosed. Fully grasp the problems of oil casing leakage, outer channeling and packer leakage in water injection wells, and enrich downhole operations. In this paper, the downhole noise signal data are standardized, and the K-means clustering algorithm is used to classify the downhole noise signal according to the correlation coefficient of different frequencies to obtain the low-frequency noise signal, and the low-frequency noise signal is clustered twice to obtain the channeling frequency band and the reservoir fluid frequency band. The accurate channeling frequency range is determined and conforms to the domestic and foreign research data. The channeling frequency band is processed by wavelet threshold, and the useless noise in the channeling frequency band is eliminated. The channeling noise signal curve after processing is analyzed, and the main output layers have an obvious amplitude back channeling. The K-means clustering algorithm is used to analyze the channeling frequency band, and the channeling noise is processed by wavelet threshold. It is a new noise signal curve processing method, which provides a new idea for the spectrum noise logging technology to master the problem of channeling outside the pipe in the water injection well.
Czasopismo
Rocznik
Strony
2137--2147
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • Key Laboratory of Oil and Gas Resources and Exploration Technology of Ministry of Education, Yangtze University, Wuhan 430100, Hubei, China
autor
  • Key Laboratory of Oil and Gas Resources and Exploration Technology of Ministry of Education, Yangtze University, Wuhan 430100, Hubei, China
  • Well Testing Company, PetroChina Qinghai Oilfield Company, Mangya 817500, Qinghai, China
autor
  • CNPC Logging Company Limited, Xian 710077, Shaanxi, China
autor
  • CNPC Logging Company Limited, Xian 710077, Shaanxi, China
  • CNPC Logging Company Limited, Xian 710077, Shaanxi, China
autor
  • Key Laboratory of Oil and Gas Resources and Exploration Technology of Ministry of Education, Yangtze University, Wuhan 430100, Hubei, China
autor
  • Key Laboratory of Oil and Gas Resources and Exploration Technology of Ministry of Education, Yangtze University, Wuhan 430100, Hubei, China
Bibliografia
  • 1. Arthur D, Vassilvitskii S (2007) k-means++: the advantages of careful seeding. In: Proceedings of the eighteenth annual ACM-SIAM symposium on discrete algorithms
  • 2. Aslanyan I, Matveev S, Giniyatullin A et al (2016) Well log analysis handbook, 3rd edn. TGT Oilfield Services DMCC, Dubai
  • 3. Cao YF (2020) Research on noise removal and recognition algorithm of LWD signal based on second generation wavelet transform. Shandong University, Jinan. https://doi.org/10.27272/d.cnki.gshdu.2020.004511
  • 4. Ghalem S, Draoui E, Mohamed A (2012a) Innovative noise and high-precision temperature logging tool for diagnosing complex well problems. In: Abu Dhabi international petroleum exhibition and conference. Abu Dhabi, UAE
  • 5. Ghalem S, Draoui E, Mohamed A et al (2012b) Innovative noise and high-precision temperature logging tool for diagnosing complex well problems. SPE-161712-MS. https://doi.org/10.2118/161712-MS
  • 6. Guo HM, Dai JC, Chen KG (2007) Production logging principle and data interpretation, vol 4. Petroleum Industry Press, Beijing, p 298
  • 7. Hu WC, Chen JG, Gong JL et al (2021) The application of noise logging in searching for outside casing channel and leak in oil–gas well. Pet Chem Equip 24(07):128–130
  • 8. Hu YL, Du XD (2022) Spectrum noise logging’s applicability under different conditions. Well Logging Technol 46(04):467. https://doi.org/10.16489/j.issn.1004-1338.2022.04.015
  • 9. Huo SY (1989) Noise logging test and effect. Pet Instrum 3(03):131–134
  • 10. Ismkhan H (2018) I-k-means+: an iterative clustering algorithm based on an enhanced version of the k-means. Pattern Recognit 79:402–413. https://doi.org/10.1016/j.patcog.2018.02.015
  • 11. Jia YY, Li YK (2021) Techniques of layering injection and the measurement-adjustment towards wells with casing damage in Shengtuo oilfield. Pet Drill Tech 49(2):107–112
  • 12. Krishna K, Murty MN (1999) Genetic K-means algorithm. IEEE Trans Syst Man Cybern 29(03):433–439. https://doi.org/10.1109/3477.764879
  • 13. Lahmiri S (2014) Comparative study of ECG signal denoising by wavelet thresholding in empirical and variational mode decomposition domains. Healthc Technol Lett 1(3):104–109. https://doi.org/10.1049/htl.2014.0073
  • 14. Li GQ (2008) Noise logging. Oil Gas Field Surf Eng 04:69–69
  • 15. Lutfullin AA, Abdrahinov AR, Shigapov IN et al (2014) Identification of behind-casing flowing reservoir intervals by the integrated high-precision temperature and spectral noise logging techniques. In: SPE Russian oil and gas exploration and production technical conference and exhibition. Moscow, Russia. https://doi.org/10.2118/171251-MS
  • 16. Ma YG (2020) Application of spectrum noise logging in production wells. Well Logging Technol 44(03):229–232. https://doi.org/10.16489/j.issn.1004-1338.2020.03.003
  • 17. Maslennikova YS, Bochkarev VV, Savinkov AV, Davydov DA (2012) Spectral noise logging data processing technology. In: SPE Russian oil and gas exploration and production technical conference and exhibition. Moscow, Russia. https://doi.org/10.2118/162081-MS
  • 18. Qiu JQ, Zhang H, Lei G et al (2017) Application of spectrum noise logging in water injection well. Well Logging Technol 41(05):601–605. https://doi.org/10.16489/j.issn.1004-1338.2017.05.020
  • 19. Tang P, Li QF, Zhu CQ et al (2021) Denoising method of microseismic threshold based on wavelet transform. J Hunan Univ Sci Technol (Nat Sci Edit) 36(04):1–7. https://doi.org/10.27272/d.cnki.gshdu.2020.004511
  • 20. Tian YN, Dai JC, Chen M et al (2020) Spectral noise logging technology and application. Pet Tubul Goods Instrum 6(2):64–68. https://doi.org/10.19459/j.cnki.61-1500/te.2020.02.014
  • 21. Tu XW (1994) High resolution noise logging tool and its application.Well Logging Technol 18(01):71–75. https://doi.org/10.16489/j.issn.1004-1338.1994.01.012
  • 22. Wang XY, Han JL, Yuan GJ et al (2021) Laboratory study on ultrasonic casing damage detection. China Pet Mach 49(04):103–108
  • 23. Wang Q (2019) Application of spectrum noise logging tool in Qinghai oilfield. Petrochem Ind Technol 26(11): 59–59 + 41
  • 24. Wu XZ, Gan LX, Yuan SX, Deng R (2022) A preliminary study on wellbore flow interpretation of fiber optic vibration signals based on K-means clustering algorithm. SN Appl Sci. https://doi.org/10.1007/s42452-022-05117-6
  • 25. Xu FH, Wang ZW, Liu JH et al (2020) Application of de-noising method on electrical imaging logging data based on joint EMD and wavelet threshold. J China Univ Pet (Edit Nat Sci) 44(3):56–65
  • 26. Yeleussinov D, Bekmagambetov D, Crabb I et al (2019) Evaluation of vertical fracture propagation using combined spectral noise logging and high precision temperature logging data in a low permeability sandstone reservoir, Western Kaz. In: SPE annual caspian technical conference. Baku Azerbaijan. https://doi.org/10.2118/198339-MS
  • 27. Zhang H, Pan ZM (2019) Parameter selection of stationary wavelet denoising algorithm. J Nat Univ Def Technol 41(04):165–170
  • 28. Zhang CX, Hao JM, Liu ZH et al (2020) A study on the logging-based identification method for reservoir fluid properties of the Yan’an formation in the Huanxi–Pengyang. Pet Drill Tech 48(5):111–119
  • 29. Zhang CG, Jiang WZ, Pan HP (2009) Principle and application of acoustic logging, vol 3. Petroleum Industry Press, Beijing, p 172
  • 30. Zhao LF, Du LJ, Zhang KQ (1997) Application of spectral analysis technique in noise logging. Well Logging Tech 21(06):442–444. https://doi.org/10.16489/j.issn.1004-1338.1997.06.01510.16489/j.issn.1004-1338.1997.06.015
  • 31. Zou CC, Yang XD, Pan LZ et al (1999) A new technique for denoising log curve on the basis of wavelet transform. Geophys Geochem Explor 23(06):462–466
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1db681b6-3b8b-4db7-8072-bd7f66342c9d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.