PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

A quantitative study between HPGR and cone crusher aided ball mill grinding: mathematical modeling by evaluating the possible microfracture effect produced by HPGR technology and cone crusher

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
High Pressure Grinding Rolls (HPGR) have been used in the mining industry for decades. However, there are limited quantifications of the particle properties after comminution. Furthermore, the influence of microcracks in grinding provided by this technology has not been extensively quantified. In the recent work, there were two comminution paths tested: 1 (Jaw crusher + cone crusher + ball mill) and 2 (Jaw crusher + HPGR + ball mill). The possible weakening effect aiding ball mill grinding due to microcracks of HPGR path was shown via specific energy, fines generation and breakage rate measurements. To achieve a quantification about the impact of microcracks and the high rate of reduction rate of HPGR technology, first the product was reconstructed using Rosin Rammler's Weibull double formula and the similar particle size distribution was obtained by a conventional cone crusher. By this way the feed size distribution to the grinding stage remained constant regardless of the type of crushing process (HPGR or cone crusher). The results showed that the microfractures generated by the HPGR technology influence the specific energy consumption, fines generation and breakage rates. Ball mill after HPGR consumed 12.46 kWh/t of specific energy, however ball mill after cone crusher consumed 14.36 kWh/t of specific energy. The experimental methodology proposed in this paper maintains a consistent feed size range (-1500 to +41.31 μm) to show that the size reduction observed in the sample undergoing HPGR grinding is not the primary factor contributing to reduced energy consumption and increased fines generation. Instead, it is predominantly associated with the microfractures generated through the compression in HPGR technology; the energy reduction (optimization) of a grinding path is shown in the study.
Rocznik
Strony
art. no. 177620
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
  • Facultad de Ingeniería – Instituto de Metalurgia, Universidad Autónoma de San Luis Potosí, México
autor
  • MPES Engineering, Elmar Towers C Block, 3028. Cad. No: 8C Kat: 19 Daire: 200, Konutkent Mah, 06810 Ankara, Turkey
  • Facultad de Ingeniería – Instituto de Metalurgia, Universidad Autónoma de San Luis Potosí, México
  • Facultad de Ingeniería – Instituto de Metalurgia, Universidad Autónoma de San Luis Potosí, México
  • Unidad Académica Multidisciplinaria Región Altiplano, Ingeniería de Minerales, Universidad Autónoma de San Luis Potosí, México
Bibliografia
  • AUSTIN, L., 1972. Estimation of non-normalized breakage distribution parameters from batch grinding. Powder Technol. 5 (5), 267–277.
  • AUSTIN, L.G., BRAME, K., 1983. A comparison of Bond method for sizing wet tumbling ball mills with a size-mass balance simulation model. Powder Technol. 34 (2), 261–274.
  • AUSTIN, L.G., 1982. Rate equations for non-linear breakage in mills due to materials effects. Powder Technol. 31, 127–133.
  • ALTUN OKAY, BENZER HAKAN, DUNDAR HAKAN, AYDOGAN NAMIK A., 2011. Comparison of open and closed circuit HPGR application on dry grinding circuit performance, Minerals Eng., 24(3–4), 267-275.
  • CELIK, I.B., ONER, M., 2006. The influence of grinding mechanism on the liberation characteristics of clinker minerals. Cem. Concr. Res. 36 (3), 422–427.
  • DANIEL, M., 2007. Energy efficient mineral liberation using HPGR technology. PhD thesis University of Queensland, JKMRC, Australia.
  • DATTA A. A model of batch grinding with impact energy spectra. Ph.D. Thesis, Department of Metallurgical Engineering, University of Utah, 1999.
  • DHAWAN, N., SAFARZADEH, M. S., MILLER, J. D., MOATS, M. S., RAJAMANI, R. K., LIN, C. L. (2012). Recent advances in the application of X-ray computed tomography in the analysis of heap leaching systems. Minerals Engineering, 35, 75-86
  • DUNNE, R., GOULSBRA, A., DUNLOP, I., 1996. High-pressure grinding rolls and the effect on liberation: comparative test results. Randol Gold Forum 49–54.
  • FAN, J.J., QIU, G.Z., JIANG, T., GUO, Y.F., HAO, H.Z., YANG, Y.B., 2012. Mechanism of high-pressure roll grinding on compression strength of oxidized hematite pellets. J Central South Univ 19 (9), 2611–2619.
  • FUJIMOTO, S., 1993. Reducing Specific Power usage in Cement Plants, vol. 7. World Cement, pp. 25–35.
  • GUO, X.; CUI, S., DAI, S., HAN, J., WANG, C. (2019). Investigation of microcrack formation in vanadium-titanium magnetite using different crushing processes. J. South. Afr. Inst. Min. Metall. 2019, 119, 811–816.
  • GUTSCHE, O., FUERSTENAU, D.W., 2004. Influence of particle size and shape on the comminution of single particles in a rigidly mounted roll mill. Powder Technol. 143 (26), 186–195.
  • GENÇ, Ö., BENZER, A.H., 2016. Effect of High-Pressure Grinding Rolls (HPGR) pre-grinding and ball mill intermediate diaphragm grate design on grinding capacity of an industrial scale two-compartment cement ball mill classification circuit, Minerals Eng. 92, 47-56,
  • HERBST, J.A., FUERSTENAU, D.W., 1973. Mathematical simulation of dry ball milling using specific power information. Trans. SME – AIME 254, 343–348.
  • HERBST, J.A., FUERSTENAU, D.W., 1968. The zero order production of fine sizes in comminution and its implication in simulation. Trans. Am. Inst. Min. Eng. 241 (1968), 538–549.
  • HERBST, J.A., RAJAMANI, R.K., MULAR, A.L., JERGENSEN, G.V., 1982. Developing a Simulator for Ball Mill 1986 Scale-Up: A Case Study. Design and Installation of Comminution Circuit. AIME, New York, pp. 325–345.
  • KATUBILWA, F.M., MOYS, M.H., 2009. Effect of ball size distribution on milling rate. Miner. Eng. 22, 1283–1288.
  • KING, R.P., 2001. Modeling and Simulation of Mineral Processing Systems. Butterworth-Heinemann ISBN 0-7506-4884-8.
  • KLIMPEL, R.R., Slurry Rheology Influence on the performance of Mineral/Coal Grinding Circuits, Mining Eng., 1983, 21-28.
  • MAXTON, D., MORLEY, C., BEARMAN, R.A., 2003. Quantification of the benefits of high-pressure rolls crushing in an operating environment. Miner. Eng. 16 (9), 827–838.
  • MICHAELIS, V.H., 2005. Real and potential metallurgical benefits of HPGR in hard rock ore processing. In: Proceedings of the Randol Innovative Metallurgy Forum Held in Perth, W.A., Australia, 21–24 August, pp. 31–39.
  • MILLER, J., LIN, C.-L. (2009). Recent Advances in Mineral Processing Plant Design. In A. L. Mular, D. N. Halbe, & D. J. Barratt (Eds.), Mineral Processing Plant Design, Practice, and Control: Proceedings, Volume 1 (pp. 48-59). Society for Mining, Metallurgy, and Exploration (SME).
  • NGHIPULILE, T., NKWANYANA, S., LAMECK, N. (2023). The Effect of HPGR and Conventional Crushing on the Extent of Micro-Cracks, Milling Energy Requirements and the Degree of Liberation: A Case Study of UG2 Platinum Ore. Minerals 2023, 13, 1309.
  • NOMURA, S., HOSODA, K., TANAKA, T., 1991. An analysis of the selection function for mills using balls as grinding media. Powder Technol. 68, 1.
  • SCHONERT, K., 1988. A first survey of grinding with high-pressure compression roller mills. Int. J. Miner. Process. 22 (1–4), 401.
  • TAVARES, L.M., CARVALHO, R.M., 2009. Modeling breakage rates of coarse particles in ball mills. Miner. Eng. 22 (7-8), 650–659.
  • TAVARES, L.M., 2005. Particle weakening in high-pressure roll grinding. Miner. Eng. 18 (7), 651–657.
  • TUZCU, E.T., RAJAMANI, R.K., 2011. Modeling breakage rates in mills with impact energy spectra and ultra-fast load cell data. Miner. Eng. 24, 252–260.
  • TAGGART, A. F., BEHRE H. A., 1945. Handbook of Mineral Dressing, Ores and Industrial Minerals, Volume 1. Wiley J. & sons, Incorporated, 1905 pp.
  • VOGEL, L., PEUKERT, W., 2003. Breakage behaviour of different materials-construction of a mastercurve for the breakage probability. Powder Technol. 129, 101–110.
  • WILLS, B. A., FINCH, J. A. (2015). Wills' mineral processing technology: an introduction to the practical aspects of ore treatment and mineral recovery. Elsevier.
  • ZHANG, J., NAPIER-MUNN, T. J. (2008). Comminution handbook. Julius Kruttschnitt Mineral Research Centre, The University of Queensland.
  • ZHAO, X., HUANG, S., LIU, C., DENG, L., 2011. Study on the crush model of high-pressure grinding rolls. Electr. Inf. Eng. Mechatron. 921–928.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1db24ae0-c379-4cc2-94a1-a60a68f0c2ed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.