PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A research study on unsteady state convection diffusion flow with adoption of the finite volume technique

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research paper is an attempt to solve the unsteady state convection diffusion one dimension equation. It focuses on the fully implicit hybrid differencing numerical finite volume technique as well as the fully implicit central differencing numerical finite volume technique. The simulation of the unsteady state convection diffusion problem with a known actual solution is also used to validate both the techniques, respectively, the fully implicite hybrid differencing numerical finite volume technique as well as the fully implicit central differencing numerical finite volume technique by giving a particular example and solving it using the appropriate, particular technique. It is observed that the numerical scheme is an outstanding deal with the exact solution. Numerical results and graphs are presented for different Peclet numbers.
Rocznik
Strony
65--76
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • Department of Mathematics, LDRP Institute of Technology and Research Kadi Sarva Vishwavidyalaya, Gandhinagar Gujarat, India
  • Gujarat Technological University, Ahemadabad Gujarat, India
  • Department of Mathematics, Sarvajanik College of Engineering and Technology, Surat Gujarat, India
Bibliografia
  • [1] Suhas, P. (1980). Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing Corporation, Etas-Unis d’Am ́erique.
  • [2] Anderson, J.D., & Wendt, J. (1995). Computational Fluid Dynamics. 206, Springer.
  • [3] Kaya, B. (2010). Solution of the advection-diffusion equation using the differential quadrature method. KSCE Journal of Civil Engineering, 14(1), 69-75.
  • [4] Versteeg, H.K., & Malalasekera W. (2007). An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Pearson Education.
  • [5] Smith, G.D. (1985). Numerical Solution of Partial Differential Equations: Finite Difference Methods. Oxford University Press.
  • [6] Ozisik, M.N. (1985). Heat Transfer: A Basic Approach. 1. New York: McGraw-Hill.
  • [7] Moukalled, F. et al. (2016). The Finite Volume Method in Computational Fluid Dynamics. 113, Springer.
  • [8] Peng, H.F., Yang, K., Cui, M., & Gao, X.W. (2019). Radial integration boundary element method for solving two-dimensional unsteady convection-diffusion problem. Engineering Analysis with Boundary Elements, 102, 39-50.
  • [9] Anley, E.F., & Zheng, Z. (2020). Finite difference approximation method for a space fractional convection-diffusion equation with variable coefficients. Symmetry, 12(3), 485.
  • [10] Appadu, A.R., Djoko, J.K., & Gidey, H. (2016). A computational study of three numerical methods for some advection-diffusion problems. Applied Mathematics and Computation, 272, 629-647.
  • [11] Mazumder, S. (2015). Numerical Methods for Partial Differential Equations: Finite Difference and Finite Volume Methods. Academic Press.
  • [12] Aswin, V., Awasthi, A., & Anu, C. (2015). A comparative study of numerical schemes for convection-diffusion equation. Procedia Engineering, 127, 621-627.
  • [13] Yaghoubi, A. (2017). High order finite difference schemes for solving advection-diffusion equation. Journal of Computer Science and Computational Mathematics, 7(2), 45-48.
  • [14] Anley, E.F. (2015). Numerical solutions of elliptic partial differential equations by using finite volume method. Pure and Applied Mathematics Journal, 5(4), 120-129.
  • [15] Xu, M. (2018). A modified finite volume method for convection-diffusion-reaction problems. International Journal of Heat and Mass Transfer, 117, 658-668.
  • [16] Patel, M.R., & Pandya, J.U. (2021). Numerical study of a one and two-dimensional heat flow using finite volume. Materials Today: Proceedings.
  • [17] Som, S. (2008). Introduction to Heat Transfer. PHI Learning Pvt. Ltd.
  • [18] Kundu, P.K., & Cohen, I.M. (2002). Fluid Mechanics. San Diego: Academic Press.
  • [19] Sastry, S.S. (2012). Introductory Methods of Numerical Analysis. PHI Learning Pvt. Ltd.
  • [20] Gismalla, D. (2014). Matlab software for iterative methods and algorithms to solve a linear system. International Journal of Engineering and Technical Research (IJETR).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1dad1321-173e-4b36-8a71-7bb5c4d7981c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.