PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A mirrored modified hybrid switched inductor high gain DC-DC boost converter

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A mirrored modified hybrid switched inductor high gain dc-dc boost converter is proposed in this paper. In this topology, input voltage source is divided into two equal parts and they are embedded in series with the converter inductors. This leads to a reduction in voltage stress across the capacitors. In addition, two mirrored boost converters with switched inductor are connected to each other. By replacing a switched inductor with the main inductor of the boost converter, the output voltage range is developed. This delivers high voltage gain for the proposed converter. The voltage gain, voltage stress across capacitors and current ripple of inductors of the proposed converter are compared with the conventional boost converter and hybrid switched inductor boost converter. The accuracy and performance of the proposed converter are reconfirmed through comparing simulation results of EMTDC/PSCAD software with the mathematical calculations. The main advantages of the proposed topology are high voltage gain, low voltage and current ripples and particularly low voltage stress on the capacitors.
Rocznik
Strony
135--143
Opis fizyczny
Bibliogr. 24 poz., rys., wykr.
Twórcy
  • Young Researchers and Elite Club, Ahar Branch, Islamic Azad University, Ahar, Iran
  • Department of Energy Management, Meganir Engineering Co., Tabriz, Iran
  • Young Researchers and Elite Club, Ahar Branch, Islamic Azad University, Ahar, Iran
  • Department of Power Distribution, Azarbaijan Power Engineering Consultant Co. (Mona), Tabriz, Iran
  • Department of Electrical and Computer Engineering, Shiraz University of Technology, Shiraz, Iran
Bibliografia
  • 1. Nabati, Y., and Babaei, E. (2015) A new dc-dc converter with high voltage gain and low voltage stress on power switches. 2015 International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles (ESARS), 1-6.
  • 2. Zhu, X., Zhang, B., Li, Z., Li, H., and Ran, L. (2017) Extended Switched-Boost DC-DC Converters Adopting Switched-Capacitor/Switched-Inductor Cells for High Step-up Conversion. IEEE Trans. Emerg. Sel. Topics Power Electron., 5 (3), 1020-1030.
  • 3. Nguyen, M.K., Duong, T.D., and Lim, Y.C. (2017) Switched-Capacitor-Based Dual-Switch High-Boost DC-DC Converter. IEEE Trans. Power Electron., PP (99), 1-11.
  • 4. Nouri, T., Hosseini, S.H., Babaei, E., and Ebrahimi, J. (2014) Generalised transformerless ultra step-up DC-DC converter with reduced voltage stress on semiconductors. IET Power Electron., 7 (11), 2791-2805.
  • 5. Faqiang, W., Shan, M., and Xikui, M. (2015) Improved small signal model for voltage-boosting converter with hybrid energy pumping. IET Power Electron., 8 (4), 546-553.
  • 6. Reverter, F., and Gasulla, M. (2016) Optimal Inductor Current in Boost DC/DC Converters Operating in Burst Mode Under Light-Load Conditions. IEEE Trans. Power Electron., 31 (1), 15-20.
  • 7. Jin, K., and Liu, C. (2016) A Novel PWM High Voltage Conversion Ratio Bidirectional Three-Phase DC/DC Converter With Y-∆ Connected Transformer. IEEE Trans. Power Electron., 31 (1), 81-88.
  • 8. Dusmez, S., Khaligh, A., and Hasanzadeh, A. (2015) A Zero-Voltage-Transition Bidirectional DC/DC Converter. IEEE Trans. Ind. Electron., 62 (5), 3152-3162.
  • 9. Tang, Y., Fu, D., Kan, J., and Wang, T. (2016) Dual Switches DC/DC Converter With Three-Winding-Coupled Inductor and Charge Pump. IEEE Trans. Power Electron., 31 (1), 461-469.
  • 10. Liu, H., Li, F., and Ai, J. (2016) A Novel High Step-Up Dual Switches Converter With Coupled Inductor and Voltage Multiplier Cell for a Renewable Energy System. IEEE Trans. Power Electron., 31 (7), 4974-4983.
  • 11. Liu, H., and Li, F. (2016) A Novel High Step-up Converter With a Quasi-active Switched-Inductor Structure for Renewable Energy Systems. IEEE Trans. Power Electron., 31 (7), 5030-5039.
  • 12. Hsieh, Y.P., Chen, J.F., Liang, T.J., and Yang, L.S. (2013) Novel High Step-Up DC-DC Converter for Distributed Generation System. IEEE Trans. Ind. Electron., 60 (4), 1473-1482.
  • 13. Yari, K., Forouzesh, M., and Baghramian, A. (2015) A novel high voltage gain DC-DC converter with reduced components voltage stress. 2015 7th Power Electronics and Drive Systems Technologies Conference (PEDSTC), 173-177.
  • 14. Sri Revathi, B., and Prabhakar, M. (2016) Non isolated high gain DC-DC converter topologies for PV applications-A comprehensive review. Renewable and Sustainable Energy Reviews, 66, 920-933.
  • 15. Amirbande, M., Yari, K., Forouzesh, M., and Baghramian, A. (2016) A novel single switch high gain DC-DC converter employing coupled inductor and diode capacitor. 2016 7th Power Electronics and Drive Systems Technologies Conference (PEDSTC), 159-164.
  • 16. Forouzesh, M., Yari, K., Baghramian, A., and Hasanpour, S. (2017) Single-switch high step-up converter based on coupled inductor and switched capacitor techniques with quasi-resonant operation. IET Power Electron., 10 (2), 240-250(10).
  • 17. Liu, J., Gao, D., and Wang, Y. (2015) High power high voltage gain interleaved DC-DC boost converter application. 2015 6th International Conference on Power Electronics Systems and Applications (PESA), 1-6.
  • 18. Schmitz, L., Martins, D.C., and Coelho, R.F. (2017) Generalized High Step-Up DC-DC Boost-Based Converter With Gain Cell. IEEE Trans. Circuits Syst. I, 64 (2), 480-493.
  • 19. Quang, T.N., Chiu, H.J., Lo, Y.K., Yang, C.Y., and Ma, H.B. (2014) High voltage-gain boost DC-DC converter with tapped-inductor. 2014 International Power Electronics and Application Conference and Exposition, 1519-1525.
  • 20. Ye, Y.M., and Cheng, K.W.E. (2014) Quadratic boost converter with low buffer capacitor stress. IET Power Electron., 7 (5), 1162-1170.
  • 21. Axelrod, B., Berkovich, Y., and Ioinovici, A. (2008) Switched-Capacitor/Switched-Inductor Structures for Getting Transformerless Hybrid DC-DC PWM Converters. IEEE Trans. Circuits Syst. I, 55 (2), 687- 696.
  • 22. Zhao, M., Chen, Z., and Blaabjerg, F. (2006) Modeling of DC/DC Converter for DC Load Flow Calculation. 2006 12th International Power Electronics and Motion Control Conference, 561-566.
  • 23. Dirac, P.A.M. (1953) The lorentz transformation and absolute time. Physica, 19 (1-12), 888-896.
  • 24. Feynman, R.P., and Vernon Jr., F.L. (1963) The theory of a general quantum system interacting with a linear dissipative system. Annals of Physics, 24, 118-173.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1da9aa52-36ce-455a-839d-413e4d356766
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.