PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Factors Influencing Accuracy of Estimating Position of Objects in a Multi-camera System

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nowadays, research focusing on robotics, autonomous vehicles, and scene analysis shows a clear need for the ability to accurately reconstruct three-dimensional environments. One of the methods allowing to conduct such a reconstruction is to use a set of cameras and image processing techniques. This is a passive method. Despite being, in general, less accurate than its active counterparts, it offers significant advantages in numerous applications in which active systems cannot be deployed due to limited performance. This paper provides a theoretical analysis of the accuracy of estimating 3D positions of objects present at a given scene, based on images from a set of cameras. The analysis assumes a known geometrical configuration of the camera system. The important limiting factor in the considered scenario is the physical resolution of sensors - especially in the case of systems that are supposed to work in real time, with a high FPS rate, as the use of high-resolution cameras is difficult in such circumstances. In the paper, the influence of the geometric arrangement of the cameras is studied and important conclusions about the potential of three-camera configurations are drawn. The analysis performed and the formulas derived help predict the boundary accuracy values of any system using a digital camera. The results of an experiment that confirm the theoretical conclusions are presented as well.
Rocznik
Tom
Strony
1--16
Opis fizyczny
Bibliogr. 49 poz., rys., wykr.
Twórcy
  • Institute for Multimedia Telecommunications Poznan University of Technology, Poznań, Poland
  • Institute for Multimedia Telecommunications Poznan University of Technology, Poznań, Poland
  • Mucha sp. z o.o., Poznań, Poland
Bibliografia
  • [1] T. Grajek, R. Ratajczak, M. Domański, and K. Wegner, "Limitations of Vehicle Length Estimation Using Stereoscopic Video Analysis", 20th International Conference on Systems, Signals and Image Processing IWSSIP, Bucharest, Romania, pp. 27-30, 2013 (https:/doi.org/10.1109/IWSSIP.2013.6623441).
  • [2] R. Ratajczak, T. Grajek, K. Wegner, K. Klimaszewski, M. Kurc, and M. Domański, "Vehicle Dimensions Estimation Scheme Using AAM on Stereoscopic Video", 10th IEEE International Conference on Advanced Video and Signal-Based Surveillance, AVSS, Krakow, Poland, pp. 478-482, 2013 (https:/doi.org/10.1109/AVSS.2013.6636686).
  • [3] R.I. Hartley, "Theory and Practice of Projective Rectification", International Journal of Computer Vision, vol. 35, pp. 115-127, 1999 (https:/doi.org/10.1023/A:1008115206617).
  • [4] L. Traxler, L. Ginner, S. Breuss, and B. Blaschitz, "Experimental Comparison of Optical Inline 3D Measurement and Inspection Systems", IEEE Access, vol. 9, pp. 53952-53963, 2021 (https:/doi.org/10.1109/ACCESS.2021.3070381).
  • [5] L. Wang et al., "Parallax Attention for Unsupervised Stereo Correspondence Learning", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 4, pp. 2108-2125, 2022 (https:/doi.org/10.1109/TPAMI.2020.3026899).
  • [6] S. Wang et al., "Horizontal Attention Based Generation Module for Unsupervised Domain Adaptive Stereo Matching", IEEE Robotics and Automation Letters, vol. 8, no. 10, pp. 6779-6786, 2023 (https:/doi.org/10.1109/LRA.2023.3313009).
  • [7] N. Snavely, S.M. Seitz, and R. Szeliski, "Photo Tourism: Exploring Photo Collections in 3D", ACM Transactions on Graphics, vol. 25, no. 3, pp. 835-846, 2006 (https:/doi.org/10.1145/1141911.1141964).
  • [8] M. Yao and B. Xu, "A Dense Stereovision System for 3D Body Imaging", IEEE Access, vol. 7, pp. 170907-170918, 2019 (https:/doi.org/10.1109/ACCESS.2019.2955915).
  • [9] J. Odmins et al., "Comparison of Passive and Active Fiducials for Optical Tracking", Latvian Journal of Physics and Technical Sciences, vol. 59, no. 5, pp. 46-57, 2022 (https:/doi.org/10.2478/lpts-2022-0040).
  • [10] C. Ye et al., "Multi-viewpoint Optical Positioning Algorithm Based on Minimizing Reconstruction Error", Measurement, vol. 218, art. no. 113206, 2023 (https:/doi.org/10.1016/j.measurement.2023.113206).
  • [11] T. Zhang, J. Wang, S. Song, and M.Q.-H. Meng, "Wearable Surgical Optical Tracking System Based on Multi-Modular Sensor Fusion", IEEE Transactions on Instrumentation and Measurement, vol. 71, art no. 5006211, 2022 (https:/doi.org/10.1109/TIM.2022.3150828).
  • [12] V. Peretroukhin, J. Kelly, and T.D. Barfoot, "Optimizing Camera Perspective for Stereo Visual Odometry", 2014 Canadian Conference on Computer and Robot Vision, Montreal, Canada, 2014 (https:/doi.org/10.1109/CRV.2014.9).
  • [13] H. M. Becerra and C. Sagues, Visual Control of Wheeled Mobile Robots, Springer, 118 p., 2014 (https:/doi.org/10.1007/978-3-319-05783-5).
  • [14] D. Murray and J.J. Little, "Using Real-Time Stereo Vision for Mobile Robot Navigation", Autonomous Robots, vol. 8, no. 2, pp. 161-171, 2000 (https:/doi.org/10.1023/A:1008987612352).
  • [15] V. Tadić et al., "Application of the ZED Depth Sensor for Painting Robot Vision System Development", IEEE Access, vol. 9, pp. 117845-117859, 2021 (https:/doi.org/10.1109/ACCESS.2021.3105720).
  • [16] A. Geiger, P. Lenz, and R. Urtasun, "Are We Ready for Autonomous Driving? The KITTI Vision Benchmark Suite", 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012 (https:/doi.org/10.1109/CVPR.2012.6248074).
  • [17] L. Yang et al., "Vehicle Speed Measurement Based on Binocular Stereovision System", IEEE Access, vol. 7, pp. 106628-106641, 2019 (https:/doi.org/10.1109/ACCESS.2019.2932120).
  • [18] L. Matthies and S. Shafer, "Error Modeling in Stereo Navigation", IEEE Journal on Robotics and Automation, vol. 3, no. 3, pp. 239-248, 1987 (https:/doi.org/10.1109/JRA.1987.1087097).
  • [19] C. Chang and S. Chatterjee, "Quantization Error Analysis in Stereo Vision", Conference Record of the Twenty-Sixth Asilomar Conference on Signals, Systems & Computers, vol. 2, pp. 1037-1041, 1992 (https:/doi.org/10.1109/ACSSC.1992.269140).
  • [20] F. Fooladgar, S. Samavi, and S.M.R. Soroushmehr, "Geometrical Analysis of Altitude Estimation Error Caused by Pixel Quantization in Stereo Vision", 20th Iranian Conference on Electrical Engineering (ICEE2012), Tehran, Iran, 2012 (https:/doi.org/10.1109/IranianCEE.2012.6292444).
  • [21] F. Fooladgar, S. Samavi, S.M.R. Soroushmehr, and S. Shirani, "Geometrical Analysis of Localization Error in Stereo Vision Systems", IEEE Sensors Journal, vol. 13, no. 11, pp. 4236-4246, 2013 (https:/doi.org/10.1109/JSEN.2013.2264480).
  • [22] C. Freundlich, M. Zavlanos, and P. Mordohai, "Exact Bias Correction and Covariance Estimation for Stereo Vision", 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, USA, pp. 3296-3304, 2015 (https:/doi.org/10.1109/CVPR.2015.7298950).
  • [23] L. Yang, B. Wang, R. Zhang, H. Zhou, and R. Wang, "Analysis on Location Accuracy for the Binocular Stereo Vision System", IEEE Photonics Journal, vol. 10, no. 1, 2017 (https:/doi.org/10.1109/JPHOT.2017.2784958).
  • [24] W. Sankowski, M. Włodarczyk, D. Kacperski, and K. Grabowski, "Estimation of Measurement Uncertainty in Stereo Vision System", Image and Vision Computing, vol. 61, pp. 70-81, 2017 (https:/doi.org/10.1016/j.imavis.2017.02.005).
  • [25] D. Jin, Y. Yang, "Sensitivity Analysis of the Error Factors in the Binocular Vision Measurement System", Optical Engineering, vol. 57, no. 10, pp. 104-109, 2018 (https:/doi.org/10.1117/1.OE.57.10.104109).
  • [26] X. Liu, W. Chen, H. Madhusudanan, L. Du, and Y. Sun, "Camera Orientation Optimization in Stereo Vision Systems for Low Measurement Error", IEEE/ASME Transactions on Mechatronics, vol. 26, no. 2, pp. 1178-1182, 2021 (https:/doi.org/10.1109/TMECH.2020.3019305).
  • [27] S. Gao, X. Chen, X. Wu, T. Zeng, and X. Xie, "Analysis of Ranging Error of Parallel Binocular Vision System", 2020 IEEE International Conference on Mechatronics and Automation (ICMA), Beijing, China, pp. 621-625, 2020 (https:/doi.org/10.1109/ICMA49215.2020.9233770).
  • [28] D. Liaw, S. Zhao, and Y. Hu, "A Study of Image Processing Based Object Depth Estimation", 2019 19th International Conference on Control, Automation and Systems (ICCAS), Jeju, South Korea, pp. 949-954, 2019 (https:/doi.org/10.23919/ICCAS47443.2019.8971553).
  • [29] X. Guan, X. Li, J. Su, H. Pan, and L. Geng, "Integrative Evaluation of the Optimal Configuration for the Measurement of the Line Segments Using Stereo Vision", Optik, vol. 124, no. 11, pp. 1015-1018, 2013 (https:/doi.org/10.1016/J.IJLEO.2013.01.018).
  • [30] P. Pinggera, D. Pfeiffer, U. Franke, and R. Mester, "Know Your Limits: Accuracy of Long Range Stereoscopic Object Measurements in Practice", Proceedings of 13th European Conference on Computer Vision, Zurich, Switzerland, 2014 (https:/doi.org/0.1007/978-3-319-10605-2_7).
  • [31] L. Yu and G. Lubineau, "Modeling of Systematic Errors in Stereo-digital Image Correlation Due to Camera Self-heating", Scientific Reports, vol. 9, art. no. 6567, 2019 (https:/doi.org/10.1038/s41598-019-43019-7).
  • [32] U.R. Dhond and J.K. Aggarwal, "Binocular Versus Trinocular Stereo", Proceedings of IEEE International Conference on Robotics and Automation, vol. 3, pp. 2045-2050, 1990 (https:/doi.org/10.1109/ROBOT.1990.126306).
  • [33] J. Wang et al., "Stereo Matching Optimization with Multi-baseline Trinocular Camera Model", 2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), London, Canada, 2020 (https:/doi.org/10.1109/CCECE47787.2020.9255786).
  • [34] S. Bi et al., "High Precision Optical Tracking System Based on Near Infrared Trinocular Stereo Vision", Sensors, vol. 21, no. 7, 2021 (https:/doi.org/10.3390/s21072528).
  • [35] Y. Gao, H. Cui, X. Wang, and Z. Huang, "Novel Precision Vision Measurement Method Between Area-Array Imaging and Linear-Array Imaging Especially for Dynamic Objects", IEEE Transactions on Instrumentation and Measurement, vol. 71, art. no. 5022609, 2022 (https:/doi.org/10.1109/TIM.2022.3207826).
  • [36] W. Förstner and B.P. Wrobel, Photogrammetric Computer Vision, Springer Cham, 816 p., 2016 (https:/doi.org/10.1007/978-3-319-11550-4).
  • [37] B. Cyganek and J.P. Siebert, An Introduction to 3D Computer Vision Techniques and Algorithms, Hoboken: Wiley, 512 p., 2009 (https:/doi.org/10.1002/9780470699720).
  • [38] D. Mieloch and A. Grzelka, "Segmentation-based Method of Increasing the Depth Maps Temporal Consistency", International Journal of Electronics and Telecommunications, vol. 64, no. 3, pp. 293-298, 2018 (https:/doi.org/10.24425/123521).
  • [39] H. Xu and J. Zhang, "AANet: Adaptive Aggregation Network for Efficient Stereo Matching", IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, pp. 1956-1965, 2020 (https:/doi.org/10.1109/CVPR42600.2020.00203).
  • [40] O. Stankiewicz and M. Domański, "Depth Map Estimation based on Maximum a Posteriori Probability", IEIE Transactions on Smart Processing and Computing, vol. 7, no. 1, pp. 49-61, 2018 (https:/doi.org/10.5573/IEIESPC.2018.7.1.049).
  • [41] D. Mieloch, A. Dziembowski, A. Grzelka, O. Stankiewicz, and M. Domański, "Graph-based Multiview Depth Estimation Using Segmentation", IEEE International Conference on Multimedia and Expo ICME, Hong Kong, China, pp. 217-222, 2017 (https:/doi.org/10.1109/ICME.2017.8019532).
  • [42] R. Brandt, N. Strisciuglio, N. Petkov, and M. Wilkinson, "Efficient Binocular Stereo Correspondence Matching with 1-D Max-trees", Pattern Recognition Letters, vol. 135, pp. 402-408, 2020 (https:/doi.org/10.1016/j.patrec.2020.02.019).
  • [43] B. Busam, M. Hog, S. McDonagh, and G. Slabaugh, "SteReFo: Efficient Image Refocusing with Stereo Vision", 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, South Korea, pp. 3295-3304, 2019 (https:/doi.org/10.1109/ICCVW.2019.00411).
  • [44] B. Wilburn et al., "High Performance Imaging Using Large Camera Arrays", ACM Transactions on Graphics, vol. 24, no. 3, pp. 765-776, 2005 (https:/doi.org/10.1145/1073204.1073259).
  • [45] C. Heinze, S. Spyropoulos, S. Hussmann, and C. Perwass, "Automated Robust Metric Calibration Algorithm for Multifocus Plenoptic Cameras", IEEE Transactions on Instrumentation and Measurement, vol. 65, no. 5, pp. 1197-1205, 2016 (https:/doi.org/10.1109/TIM.2015.2507412).
  • [46] O. Stankiewicz et al., "A Free-viewpoint Television System for Horizontal Virtual Navigation", IEEE Transactions on Multimedia, vol. 20, no. 8, pp. 2182-2195, 2018 (https:/doi.org/10.1109/TMM.2018.2790162).
  • [47] N.S. Nair and M.S. Nair, "Scalable Multi-view Stereo Using CMA-ES and Distance Transform-based Depth Map Refinement", 13th International Conference on Machine Vision, Rome, Italy, 2021 (https:/doi.org/10.1117/12.2587241).
  • [48] Z. Zhang, "A Flexible New Technique for Camera Calibration", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 11, pp. 1330-1334, 2000 (https:/doi.org/10.1109/34.888718).
  • [49] C. Harris and M. Stephens, "A Combined Corner and Edge Detector", Proceedings of the 4th Alvey Vision Conference, UK, 1988, pp. 147-151, 1988 (https:/doi.org/10.5244/C.2.23).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1da78b07-47f2-4d61-8317-32a6fe4c06f6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.