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Abstract  Nowadays, research focusing on robotics, au-
tonomous vehicles, and scene analysis shows a clear need for
the ability to accurately reconstruct three-dimensional envi-
ronments. One of the methods allowing to conduct such a re-
construction is to use a set of cameras and image processing
techniques. This is a passive method. Despite being, in general,
less accurate than its active counterparts, it offers significant
advantages in numerous applications in which active systems
cannot be deployed due to limited performance. This paper pro-
vides a theoretical analysis of the accuracy of estimating 3D
positions of objects present at a given scene, based on images
from a set of cameras. The analysis assumes a known geometri-
cal configuration of the camera system. The important limiting
factor in the considered scenario is the physical resolution of sen-
sors – especially in the case of systems that are supposed to work
in real time, with a high FPS rate, as the use of high-resolution
cameras is difficult in such circumstances. In the paper, the in-
fluence of the geometric arrangement of the cameras is studied
and important conclusions about the potential of three-camera
configurations are drawn. The analysis performed and the for-
mulas derived help predict the boundary accuracy values of any
system using a digital camera. The results of an experiment that
confirm the theoretical conclusions are presented as well.

Keywords  3D imaging, measurement accuracy, optical imaging,
stereovision

1. Introduction

Evaluation of the accuracy with which the position of a given
object is estimated is a fundamental problem encountered
when optimizing multi-camera systems. In many applications,
estimation of the scene’s depth and the position of specific
objects is one of the most frequently performed tasks. The goal
is to obtain as accurate an estimate as possible, with a certain
set of limiting factors taken into consideration. Such factors
include, most often, the cost and the physical size of the setup
used. Additionally, the system needs to generate a manageable
set of data that can be processed, extracted and transmitted.
Real time data transmission and processing capabilities are
of paramount importance in many applications.

The position and the size of an object are often measured
based on an image acquired by video cameras. The majority of

such systems rely on the parallax effect. Therefore, more than
one camera and different angles of observation are required.
The simplest approach to such a system is a stereo pair –
a set of two cameras having their optical axes aligned, so that
the object of interest is visible in images acquired by both
cameras. Images from a stereo pair can be used to estimate
the distance of a set of points in the images (in some types of
parcel sorting systems, this approach is used to determine the
position of corners of the measured box). Then, the actual
size of a 3D object is calculated [1], [2]. Usually, images from
a stereo pair undergo a process of rectification, in which they
are transformed to a form with the corresponding points from
the pair of images situated along the same horizontal line.
This significantly simplifies the matching process [3].
Accurate measurement of the dimensions of objects is impor-
tant not only when sorting items, but also on production lines
and conveyors. Therefore, different measurement methods are
applied, with stereovision [4] enjoying a particularly strong
position here. In the recent years, stereovision applications
have been optimized by the use of neural networks [5], [6].
Other type of a multi-view system could be a crowd-based
3D object reconstruction, where based on images captured by
random people, a 3D mesh or a 3D model of a photographed
object is created [7].
Virtual/augmented reality applications have been gaining pop-
ularity in the recent years as well. In this approach, real-life
objects are scanned and converted into a digital model [8].
The performance of such systems depends on the ability to
precisely locate feature points in a given scene. Such prob-
lems are widely discussed in the literature, for example in [9].
Virtual/augmented reality solutions are used in a range of ap-
plications – from leisure to medical sectors. In the latter, they
may be used to identify the location of surgical instruments
or any other objects. In such applications, accuracy is utmost
importance, as the displacements of feature points are small
and any errors can influence the reconstructed orientation in
a rather significant way. Therefore, the need for continuous
optimization, even at the camera positioning stage, exists – as
evidenced in [10], [11].
A visual robot trajectory planning system, where images from
video cameras are used to control and plan the movement of
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a robotic arm to avoid obstacles [12]–[15], is another area
in which the solutions discussed in this paper may be ap-
plied. Stereo and multi-view systems may also be successfully
used in the automotive industry, as the development of au-
tonomous vehicles has been recently progressing at a very
fast pace [16]. Here, the accuracy of locating objects with-
in a scene is of utmost importance, since significant errors
may result in injuries or deaths. Traffic management is anoth-
er automotive application, with stereovision being commonly
used for measurements [1], [2], [17].
Regardless of the type of the system, the need to optimize the
accuracy of 3D positioning of objects always exists. Therefore,
evaluation of a given camera system in terms of the level
of accuracy it is capable of achieving is considered to be
a prospective research area.

2. Related Work
The notion of accuracy has been considered from many dif-
ferent perspectives. In the 1980s, various authors considered
the application of stereo pair-based robot navigation systems
and investigated the problem of accurately estimating coordi-
nates of objects within a given scene [18]. They noticed that
the problem of accuracy cannot be simplified to triangulation
and suggested a more complex model that has been relied up-
on in nearly all other projects since. In our paper, we analyze
scenarios in which more cameras are used and attempt to an-
alyze the impact of the spatial configuration of the cameras
on the accuracy of the 3D position estimates.
In [19], the authors analyze depth resolvability of a system
and show its dependency on different parameters of a stereo
pair. A similar approach is presented in papers [20], [21],
where the authors analyze the influence of the pixel size on
the accuracy of estimating the distance to a given object.
Their analysis is limited to a two-camera setup only. In [22],
the authors note that the result of position estimation has the
form of a three-dimensional figure located in space (a 3D
cell). Such a figure is usually represented by a single point.
The choice of this point does affect the accuracy of results.
Again, only a stereo pair is considered in this paper.
The estimation error is also analyzed in papers [23] and [24],
where a detailed analysis of several factors is presented for
a stereo pair. Another in-depth analysis of the stereo pair is
provided in [25]. In article [26], the authors investigate the
method of finding an optimal arrangement of a stereo pair that
would minimize the measurement errors for a given scenario
with converging optical axes of the cameras. Their analysis is
limited to a stereo pair as well.
A similar analysis for a stereo pair is found in [27]. This time,
however, a stereo pair with parallel optical axes is considered.
Another, more recent analysis of a stereo pair is given in
papers [28], [29].
From the point of view of specific applications, the importance
of studying the impact that the geometry of the system exerts
on the results obtained in practice is shown, for instance,
in [12], where stereo pair-based visual odometry is optimized

by adjusting camera orientation. Theoretical calculations
presented are augmented by experimental verification.

Many papers consider the size of a pixel as the limiting factor.
However, when using more sophisticated algorithms, it is
possible to obtain more accurate correspondences. Paper [30]
provides an analysis of matching algorithms that give sub-
pixel precision of disparity estimation. The analysis shows the
possibility of obtaining accurate disparity results up to 1/10
or 1/20 of a pixel. With such an approach it is important to
note the additional burden of the matching algorithm, which
can not always be handled on a given platform, especially
when requiring real-time results with high frame rates.

Moreover, it is very likely that due to the physical limitations
of the system, i.e. dimensioning accuracy, repeatability, and
accuracy of camera parameters, the overall accuracy will
be impacted in a more prominent way. Therefore, a need to
analyze the system and its properties exists.

A very important aspect of estimating the accuracy of a 3D
scene was tackled in paper [31], where the authors showed
the influence of a self-heating camera sensor and body on 3D
scene estimation.

Systems comprising more than two cameras were also con-
sidered in the literature, although this subject is less popular.
In [32], the authors propose the use of a third camera to im-
prove the accuracy of estimating the location of objects. They
do not, however, provide a study of the error-related factors.
Recent analyses also consider a three-camera setup, as shown
in [33]–[35]. The analysis is limited, however, and deals only
with a specific linear camera arrangement. A more complex
camera arrangement is considered in [36], where linear and
rectangular matrix camera setups are considered. In our paper,
we analyze a triangular camera arrangement using 3 cameras
only.

Overall, review of the literature stresses the importance of
accuracy. However, a limited number of analyses of various
geometrical camera setups is observed. The above applies, in
particular, to setups with more than two cameras.

In this paper, we present a closed-form 3D coordinate estima-
tion solution that is based on multiple images, and provide in-
formation about the accuracy of such a measurement method,
with various factors taken into consideration. Furthermore,
we take into account the number and spatial configuration of
the cameras required and describe their impact on the accu-
racy of estimating 3D positions in the context of multi-view
processing.

It needs to be stressed that we consider, in this paper, only
a theoretical model and we do not include the effects of noise
or camera optics imperfections. We assume an ideal camera
model that does not introduce distortions to the image. While
this means that our results are not directly applicable to a real-
life camera system, they are still useful in understanding the
relationships between the number and position of the cameras
and the boundaries of the 3D space containing the actual
location of specific points.
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2.1. Stereo Pair Approach

In a simple stereo-rectified image system, the process of
calculating the distance to a given object is relatively easy, as
it relies on trigonometric formulas [3], [37] and the relation
of the so-called disparities d, i.e. relative shifts in the position
of the object under consideration in both images. Distance z
is:

z = f
b

d
, (1)

where b is the system baseline (distance between two cameras
observing an object), and f is the focal length of the cameras.
It is assumed that both cameras have the same parameters.
Dense depth estimation is one of the applications of the above-
mentioned relationship [38]–[42].
This rudimentary system with two cameras has the advantage
of simplicity and low cost, but more demanding applications
require the use of a higher number of cameras. It is hard to
use a two-camera system to generate a sufficient data set for
refocusing or all-in-focus applications, see e.g. [43].
To address such problems, more sophisticated video systems
were developed, composed of tens of cameras, positioned
such that all of them observe the same object. The lightfield
camera system may be one of such solutions. The cameras are
arranged in a rectangular grid, pointing in the same direction
and recording the same scene [44]. Another solution consists
in using a single camera with a matrix of lenses in front of the
sensor. Such sensors, however, are difficult to manufacture
and offer limited performance in terms of the field of view
and resolution [45].
Two-camera arrangements used for 3D coordinate estima-
tion are described in the literature rather broadly. When more
cameras are available, the 3D coordinate estimation process is
usually performed by relying on pair-wise distance estimation
for consecutive pairs of cameras. Then, the results from dif-
ferent pairs are aggregated, usually by means of measurement
averaging [46], [47].

2.2. Close Form Solution of 3D Position Estimation from
Multiple Images

Let us assume that an object – a point in 3D space located
at position M = [X Y Z]T – is observed by a set of N
cameras. The i-th camera is located at coordinates Ti and
is oriented in a direction specified by a rotation matrix Ri
(Fig. 1). All parameters of the i-th camera are specified by

mi
M

y

x
z

Ti

Fig. 1. Capturing the image of a scene using a single camera.

m0

m1

mN–1

M

y

x

z

T1T0
TN–1

Fig. 2. Ideal multi-camera image acquisition setup.

Ki matrix. Cameras are not necessarily equal in that respect
and may have different intrinsic parameters in the general
case. However, in the most popular approach, all cameras in
the system are equal and have similar parameters. Moreover,
let us assume that all optical distortions have been removed.
PointM is projected on the image plane of the i-th camera
at positionmi = [ui vi 1]T expressed in homogenous image
coordinates, where direction u spans from left to right and
direction v spans from top to bottom. This situation is depicted
in Fig. 2.
In such conditions, image acquisition of point M by i-th
camera can be modeled as:

zi mi = Ki Ri(M − Ti) , (2)

where zi is the distance measured between the i-th camera
at position Ti and the observed point M in the direction
perpendicular to the image plane.
In ideal conditions, based on Eq. (2), one can calculate the
position of pointM based on the observed position mi of
that point, and distance zi.
In real-world conditions, distance zi is unknown, since it is lost
in the acquisition process. Worse, in practical arrangements
we do not know the accurate parameters of the i-th camera.
Such parameters as the position of the camera, its orientation
and other properties are frequently known only approximately
[3]. Usually, camera parameters are determined in the course
of a calibration procedure which is characterized by limited
accuracy levels, with the error value being difficult to predict
[48]. Moreover, due to the discrete nature of the image, we
know the positionmi of the imaged pointM up to a certain
degree only, i.e. to the level of a pixel, half-pixel or quarter
pixel. This scenario is presented in Fig. 3.
With all of the abovementioned reasons taken into consid-
eration, we can only try to estimate the position of pointM
based on the image taken by the i-th camera. In such condi-
tions, we can calculate an approximated position of pointM ,
further denoted byMi as:

Mi = zi(Ki Ri)
−1mi + Ti , (3)

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 2/2024 3



Krzysztof Klimaszewski, Tomasz Grajek, and Krzysztof Wegner

m0

m1 mN–1

M

M1

MN–1

M0

y

x

z

T1T0
TN–1

Fig. 3. Real-world multi-camera image acquisition setup.

Based on estimation fromN cameras, a real position of point
M in 3D space is then to be found by identifying the smallest
distance between the true position ofM and each estimate
Mi.
Let us define a square norm of the distance between the true
(unknown) position ofM and the i-th camera based estimate
Mi as |Si|2:

|Si|2 = STi Si ,
Si =M −Mi =M − zi(Ki Ri)−1mi − Ti .

(4)

The aim is to select such an estimate M ′ of the unknown
position ofM that it is closest to all estimatesMi, as this will
minimize the error of the estimate of the actualM :

argmin
M′

N−1∑
i=0

|Si|2 . (5)

Substituting Eqs. (3) and (4) into Eq. (5), we get:

argmin
M′

N−1∑
i=0

|Si|2 =

argmin
M′

N−1∑
i=0

(
M ′ − zi(Ki Ri)−1mi − Ti

)T
·
(
M ′ − zi(Ki Ri)−1mi − Ti

)
.

(6)

For further simplification, let us assign the Ai parameter
based on camera calibration and the image itself, such that:

Ai = (Ki Ri)
−1mi . (7)

Then, Eq. (6) simplifies to:

argmin
M′

N−1∑
i=0

|Si|2 =

argmin
M′

N−1∑
i=0

(
M ′ − ziAi − Ti

)T · (M ′ − ziAi − Ti) . (8)

In Eq. (8), there are N + 3 unknown variables: all distances
zi and X,Y, Z coordinates of pointM ′.
Equation (8) can be minimized by differentiation with respect
to all unknowns and finding a stationary point. Let us start
with unknowns zi:

∂
N−1∑
k=0
|Sk|2

∂zi
=
∂|Si|2

∂zi
= 2STi

∂Si
∂zi
= 2STi (−Ai) (9)

and compare the resulting equations to 0:

2STi (−Ai) = 0 . (10)
Next, we get zi as:

2STi (−Ai) = 0

−2
(
M ′ − ziAi − Ti

)T
Ai = 0(

M ′ − ziAi − Ti
)T
Ai = 0

M ′TAi − ziATi Ai − TTi Ai = 0

M ′TAi − TTi Ai = ziATi Ai

zi =
M ′TAi − TTi Ai
ATi Ai

.

(11)

From differentiation of Eq. (8) with respect to X , we get:

∂
N−1∑
i=0
|Si|2

∂X
=
N−1∑
i=0

2STi
∂Si
∂X
=

N−1∑
i=0

2STi
∂M ′

∂X
=
N−1∑
i=0

2STi · [ 1 0 0 ]T .

(12)

Similarly, from differentiation of Eq. (8) with respect to Y
and Z, we get:

∂
N−1∑
i=0
|Si|2

∂Y
=
N−1∑
i=0

2STi
∂Si
∂Y
=

N−1∑
i=0

2STi
∂M ′

∂Y
=
N−1∑
i=0

2STi · [ 0 1 0 ]T

∂
N−1∑
i=0
|Si|2

∂Z
=
N−1∑
i=0

2STi
∂Si
∂Z
=

N−1∑
i=0

2STi
∂M ′

∂Z
=
N−1∑
i=0

2STi · [ 0 0 1 ]T .

(13)

Equations (12) and (13) are equal to zero if and only if:
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N−1∑
i=0

STi = 0 . (14)

By expanding (14) and substituting Eq. (11), we get:

N−1∑
i=0

STi = 0

N−1∑
i=0

(
M ′ − ziAi − Ti

)T
= 0

N−1∑
i=0

(
M ′ − M

′TAi − TTi Ai
ATi Ai

Ai − Ti
)T
= 0

N−1∑
i=0

M ′ −
N−1∑
i=0

M ′TAi − TTi Ai
ATi Ai

Ai −
N−1∑
i=0

Ti = 0

NM ′ −
N−1∑
i=0

M ′TAi − TTi Ai
ATi Ai

Ai =
N−1∑
i=0

Ti

NM ′ −
N−1∑
i=0

M ′TAi
ATi Ai

Ai −
N−1∑
i=0

−TTi Ai
ATi Ai

Ai =
N−1∑
i=0

Ti

NM ′ −
N−1∑
i=0

M ′TAi
ATi Ai

Ai +
N−1∑
i=0

TTi Ai
ATi Ai

Ai =
N−1∑
i=0

Ti

NM ′ −
N−1∑
i=0

M ′TAi
ATi Ai

Ai =
N−1∑
i=0

Ti −
N−1∑
i=0

TTi Ai
ATi Ai

Ai .

(15)

It can be proved that (see in Appendix):

M ′TAi
ATi Ai

Ai =
AiA

T
i

ATi Ai
M ′ . (16)

So, then:

NM ′ −
N−1∑
i=0

M ′TAi
ATi Ai

Ai =
N−1∑
i=0

Ti −
N−1∑
i=0

TTi Ai
ATi Ai

Ai

NM ′ −
N−1∑
i=0

AiA
T
i

ATi Ai
M ′ =

N−1∑
i=0

(
Ti −

TTi Ai
ATi Ai

Ai

)
(
NI −

N−1∑
i=0

AiA
T
i

ATi Ai

)
M ′ =

N−1∑
i=0

(
Ti −

TTi Ai
ATi Ai

Ai

)
.

(17)

Upon assigning a 3× 3 matrixA and a 3-element vector B,
Eq. (17) can be rewritten as:

AM ′ = B (18)

where:

A = NI −
N−1∑
i=0

AiA
T
i

ATi Ai

B =
N−1∑
i=0

(
Ti −

TTi Ai
ATi Ai

Ai

)
.

(19)

The linear Eq. (18) can be easily solved to obtain the position
of pointM ′.

3. Accuracy-Related Considerations
There are three main sources of inaccuracies affecting position
estimation:
• accuracy of camera calibration – expressed by accuracy of

variables Ti,Ki and Ri,
• accuracy of point detection in the images – the accuracy of
mi,
• the number of cameras used.
The accuracy of camera calibration depends on the features of
the calibration software and the quality of calibration images
used. It also depends on the quality of the calibration pattern.
For contemporary high-resolution cameras and a typical
grid or checkerboard-based calibration patterns, shape or
coplanarity discrepancies of the calibration pattern (equaling
fractions of a millimeter) will noticeably influence calibration
accuracy. Unfortunately, it is difficult to improve calibration
accuracy.
Similarly, the accuracy of the location of points in the images
is limited as well. It may vary from several pixels in the case of
neural network object detection, to ¼ of the pixel in the case
of a simple Harris corner detector [49]. Some sophisticated
methods can improve the accuracy and resolution of the
location of corresponding points in images. Such accuracy
will be constrained, however, in all cases, by the digital nature
of the captured image and its rasterization [1], [2].
The last factor is the easiest to modify at the design stage.
In theory, it is always possible to add more cameras to the
analyzed system in order to improve its performance. This
stems from the fact that noise introduced to the process of
locating an object in a given scene, caused by inaccurate cali-
bration, as well as by the localization of corresponding points
in an image with limited raster and omnipresent image noise,
can be averaged by the addition of more (still) inaccurate data
from additional cameras.
This last factor is the one that has received the least attention
in the literature. The most important question is whether it is
always beneficial to add more cameras into a system and to
what extent such an approach improves the accuracy of the
position estimates?
In this paper, we address those questions by performing a the-
oretical analysis based on the formulas provided above. First
of all, we present the phenomenon of position uncertainty
caused by the limited granularity of data. We assume that
granular data may result in a localization error that is deter-
mined by a few factors we attempt to analyze. We also assume
that the correct localization of the object and the results of the
localization estimation process form a certain bounded vol-
ume in space, later on referred to as uncertainty region. We
evaluate what this uncertainty region of the space looks like.
The following model is used in further considerations. A small
object is observed by N cameras. The question is how the
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m2

Left image 
plane

Right image 
plane

M

Δz

Δx

area of uncertainty of estimated
3D position of a point

positions of observed point 
within the images

Fig. 4. Planar view of a real-world multi-camera image acquisition
setup. xz plane view is shown for simplicity. 3D shape of the area
of uncertainty is shown in Fig. 12.

uncertainty of its location depends on the number of cameras
used.

3.1. Stereo Pair

Figure 4 shows a simple stereoscopic system. The system is
composed of two cameras. Light emitted from (or reflected
off) a small object, i.e. point M , marked as a red dot, is
travelling along the red paths to cameras 1 and 2. Those
light rays results in cameras 1 and 2 observing pointM as
pointsm1 andm2, respectively. Without affecting generality,
it is assumed that the cameras are perfectly aligned with their
optical axes positioned parallel to each other. Thus, the optical
axes are perpendicular to the baseline of the camera system.
Such an arrangement provides perfectly rectified images of the
scene and is commonly used in stereoscopic visual systems.
Because of the digital (rasterized) nature of the image and
the limited granularity of image point representation, if ob-
ject/point M is observed at some position m1 e.g. m1 =
[430 650 1]T in the image from camera 1, it actually means
that the object that emits (or reflects) that light was located
inside the pixel cone defined by the focal length and the size
of the sensor element (blue cones in Fig. 4). If the exact path

of the light (red lines) was known, one could reconstruct the
accurate position of pointM . Unfortunately, in real world
conditions we do not know the actual path of the light ray,
but of a cone of rays (blue cones). Therefore, we can only
reconstruct the area/volume in which pointM should be lo-
cated in order to be perceived as points of the image located
atm1 andm2, respectively. This reconstruction volume of
the possible true position of pointM has a certain size which
we can parameterize. Its dimensions may be calculated along
all three axes: ∆x, ∆y, and ∆z.
With the assumption of a perfectly aligned camera system, the
translation and rotation matrices may be defined as follows:

T1 = [−b 0 0]T

T2 = [ b 0 0 ]
T

R1 = R2 = I

, (20)

where a camera pair baseline distance is 2b.

The intrinsic camera parameters are the same and equal to:

K1 = K2 =


f 0 w/2

0 f h/2

0 0 1

 . (21)

where f stands for focal length, while w and h are captured
by the modeled cameras image resolution.
For the same point m after taking the images the location
of projections of the point m onto the image plane of the
cameras have the following coordinates:

m1 = [u1 v1 1 ]
T

m2 = [u2 v2 1 ]
T
. (22)

Based on these assumptions, we can solve Eq. (18) for two
cameras and obtain the position of the observed pointM –
see Eq. (23).

M ′ =


b(4f2(u1−u2)(u1+u2−w)+(h(u1−u2)+2u2v1−2u1v2−v1w+v2w)(−2(u2v1+u1v2)+h(u1+u2−w)+(v1+v2)w))

4f2((u1−u2)2+(v1−v2)2)+(h(u1−u2)+2u2v1−2u1v2−v1w+v2w)2
−b(4f2(u1−u2)(h−v1−v2)+(h−2v1)(h−2v2)(h(u1−u2)+2u2v1−2u1v2−v1w+v2w))

4f2((u1−u2)2+(v1−v2)2)+(h(u1−u2)+2u2v1−2u1v2−v1w+v2w)2
2bf(4f2(u1−u2)+(h−v1−v2)(h(u1−u2)+2u2v1−2u1v2−v1w+v2w))
4f2((u1−u2)2+(v1−v2)2)+(h(u1−u2)+2u2v1−2u1v2−v1w+v2w)2

 . (23)

σM ′ =


√∣∣ ∂X′

∂u1

∣∣2 σu21 + ∣∣ ∂X′∂v1

∣∣2 σv21 + ∣∣ ∂X′∂u2

∣∣2 σu22 + ∣∣ ∂X′∂v2

∣∣2 σv22√∣∣ ∂Y ′
∂u1

∣∣2 σu21 + ∣∣ ∂Y ′∂v1 ∣∣2 σv21 + ∣∣ ∂Y ′∂u2

∣∣2 σu22 + ∣∣ ∂Y ′∂v2 ∣∣2 σv22√∣∣ ∂Z′
∂u1

∣∣2 σu21 + ∣∣ ∂Z′∂v1 ∣∣2 σv21 + ∣∣ ∂Z′∂u2 ∣∣2 σu22 + ∣∣ ∂Z′∂v2 ∣∣2 σv22

 . (24)

σM ′ =


√
σu2Z2(b4Y 2+b2(−2X2Y 2+(Y 2+Z2)2)+X2(X2Y 2+(Y 2+Z2)2))

2b2f2(Y 2+Z2)2√
σu2Z2(b2(Y 2+Z2)2+Y 2(X2Y 2+(Y 2+Z2)2))

2b2f2(Y 2+Z2)2√
σu2Z4(X2Y 2+(Y 2+Z2)2)

2b2f2(Y 2+Z2)2

 . (25)
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In order to estimate the uncertainty of the estimated location
of point M depending on the uncertainty of the observed
image positionsm1 andm2, Eq. (23) could be expanded into
a Taylor series around positionsm1 andm2. We will assume
here that only the uncertainty of the position is important,
while other factors, i.e. intrinsic and extrinsic parameters of
the camera:K1 andK2, T1 and T2 as well as R1 and R2, are
known with perfect accuracy. The uncertainty of the position
σM ′ expressed as standard deviation can be approximated
via the propagation rule given by Eq. (24).
Note that σM ′ is actually a 3-component vector. After the
necessary transformations and upon substituting Eq. (2) for
obtaining u1, v1, u2, v2 from X,Y, Z, we get Eq. (25).
To study the accuracy of estimating the position of point
m depending on its location in front of the camera system,
a function of accuracy expressed as standard deviation along
three main axes σX , σY , σZ could be drawn with respect to
the exact Z coordinate of pointM .
In the following calculations, we assume a perfect alignment
of the camera system, the viewing angle of the cameras fov =
60◦, image resolution of 1920×1080 pixels, and baseline
b = 0.5 m. The only source of errors is the uncertainty of the
exact location of corresponding points in the image, limited
by image resolution. The accuracy of coordinates u and v
of the positions of pointsm1 andm2, expressed as standard
deviation σu and σv, is equal to 1:

σu = σv = 1 . (26)

Therefore, for square pixels:

f =
w
2

tg fov2
(27)

For a stereo pair, the minimum distance between the camera
baseline and the object has a lower limit below which the
object is not visible to both cameras. Although the limit has
not been marked on all of the following figures, the value of
the minimum distance for the considered case, when Y = 0,
is:

√
3
b

2
+
√
3X .

Accuracy estimation is presented in Fig. 5. In the conditions
under consideration, accuracy of the estimated true position
of pointm positioned at the front of the two-camera system
at a distance of 4 m is equal to 1 cm in the z direction and 0.2
cm in the x and y directions. At the distance of 7 m, accuracy
drops to 4 cm. This means that if we measure the size of the
object at 7 m, the error is up to 4 cm. This result is valid for
a system with a 0.5 m baseline distance, meaning that the
cameras observing the object were spaced 0.5 m apart.
In Fig. 6, the relationship between the accuracy expressed
as standard deviation along three main axes σX , σY , σZ
and camera baseline b is shown. It can be observed that by
shortening the camera baseline, i.e. placing both cameras
closer, accuracy is reduced and uncertainty, expressed as
standard deviation, is increased. In general, this allows us

2 4 6 8 10

0.01

0.02

0.03

0.04

σ [m]

σYσX

σZ

z   [m]

Fig. 5. Standard deviation of position estimation along z axis with
respect to real position Z of point m (X,Y = 0, b = 0.5 m,
w = 1920, fov = 60◦)
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σYσX
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b   [m]

Fig. 6. Accuracy expressed as standard deviation σX , σY , σZ of
position estimation along x, y and z axes with respect to camera
baseline b (X,Y = 0, Z = 5 m, w = 1920, fov = 60◦).
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σY
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Fig. 7. Accuracy of position expressed as standard deviation σX ,
σY , σZ estimated along x, y axes and z axis, relative to camera
resolution w (X,Y = 0, Z = 5 m, b = 0.5 m, fov = 60◦).

to draw an expected conclusion – by doubling the camera
distance (baseline) we can lower uncertainty by a factor of
2. Therefore, the universal relationship between distance
uncertainty and baseline for a two-camera system is proved.
The accuracy of estimations is significantly impacted by the
size of the pixel, i.e. resolution of the images taken. In Fig. 7,
the dependency of accuracy – expressed as standard deviation
– on the number of pixels along the image’s horizontal axis
(horizontal resolution) is illustrated. Inverse dependency is
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Fig. 8. Accuracy expressed as standard deviation σZ of position estimation along z axis with respect to position Z of pointm and camera
baseline b (X = Y = 0, fov = 60◦, w = 1920). White areas at the bottom represent distances below the minimum limit.
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Fig. 9. Accuracy expressed as standard deviation σZ of position estimation along z axis with respect to baseline distance and image resolution
w (X = Y = 0, Z = 5 m, b = 0.5 m, fov = 60◦).
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Fig. 10. Accuracy expressed as standard deviation σZ of position estimation along z axis with respect to positionX , Z of pointm (b = 0.5m,
fov = 60◦, w = 1920). Accuracy is calculated only in the camera viewing cone.

clearly visible, although the actual values are less obvious.
The range of values of the horizontal dimension of the image
corresponds with the resolution of contemporary cameras,
ranging from below Full HD (1920×1080 pixels) to 4K UHD
(3840×2160 pixels).

Distance between the cameras is another factor influencing
accuracy, as presented in Fig. 8.

Figure 9 shows that a doubled baseline distance and a doubled
camera resolution have the same effect on position estimation
accuracy σZ along the z axis. So, at locations where not
much space is available to increase the baseline, the accuracy
of measurements may be improved by increasing resolution.
In all other cases, it is probably easier to increase the camera

baseline. This remains true especially for distant objects, as
long as they can be seen by both cameras after the camera
baseline is increased. The fact that with a higher resolution of
the camera, the requirements for calibration accuracy increase
as well, is another issue that has more a practical meaning
and that creates a set of completely new implications.

Figure 10 shows that position estimation accuracy σZ along
the z axis is independent of positions X and Y directly in
front of the camera system.

A similar analysis may be performed for the uncertainty ofX
and Y coordinates, and the results for the x axis are shown in
Fig. 11. The lowest uncertainty can be obtained for the case
when objectm is positioned exactly in the middle between
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Fig. 11. Position estimation accuracy along x axis with respect to
positions X and Z of point m for baseline b = 0.5 m, Y = 0,
fov = 60◦ and image resolution w = 1920. Accuracy is calculated
only in the camera viewing cone.

the two cameras, along the line of symmetry. When the object
moves farther away, the increase in uncertainty is negligible
within the analyzed range of Z values, provided the object
stays exactly in the middle between both cameras. As soon as
the object moves away from the line of symmetry, the level of
uncertainty rises at a rate that depends on the distance from
the baseline. For example, in a system with cameras placed 50
cm apart, the object positioned 10 m from the camera baseline
that is situated 5 m away from the axis of symmetry of the
system has theX position uncertainty of approximately 4.5
cm. Hence, it is very important to keep the measured object in
front of the camera system, i.e. close to the axis of symmetry
of the camera rig.
For all the presented plots and examples, a high degree of
accuracy of locating the corresponding points in the images
(below 1 pixel) is considered. In practice, due to the inac-
curacies of the algorithm used to localize the points, it can
be higher than all standard deviation scales linearly with the
accuracy.
It is also interesting to see the shape of the volume of the
possible locations of point m in space. Figure 12 shows

such a shape of the volume for the considered scenario, i.e.
fov = 60◦, b = 0.5 m, w = 1920. Note that for the purpose
of improving legibility, the scale along the z axis is 20 times
denser. The visualization does not take into account the blur
of the light rays and simply assumes that perfect focusing
conditions prevail and pixels of the square type are used.
In reality, the shape will be bigger by at least a Minkowski
product of the pixel shape and pixel light rays cone.

3.2. Three Camera Case

A three-camera system has left, center and right cameras,
meaning that another device is added between the two cameras
from the previous example, thus creating a system with 3
equally spaced cameras. Let us solve Eq. (18) for the case
with three cameras (N = 3) with the assumption that the
cameras are arranged along a straight line and are ideally
aligned:

T1 = [−b 0 0 ]T

T2 = [ 0 0 0 ]
T

T3 = [ b 0 0 ]
T

R1 =R2 = R3 = I

, (28)

K1 = K2 = K3


f 0 w/2

0 f h/2

0 0 1

 , (29)

m1 = [u1 v1 1 ]
T

m2 = [u2 v2 1 ]
T

m3 = [u3 v3 1 ]
T

. (30)

where 2b is the camera baseline, f stands for focal length, w
and h are the resolutions of the images captured with the use
of the modeled cameras.

σM ′ =


√∣∣ ∂X′

∂u1

∣∣2 σu21 + ∣∣ ∂X′∂v1

∣∣2 σv21 + ∣∣ ∂X′∂u2

∣∣2 σu22 + ∣∣ ∂X′∂v2

∣∣2 σv22 + ∣∣ ∂X′∂u3

∣∣2 σu23 + ∣∣ ∂X′∂v3

∣∣2 σv23√∣∣ ∂Y ′
∂u1

∣∣2 σu21 + ∣∣ ∂Y ′∂v1 ∣∣2 σv21 + ∣∣ ∂Y ′∂u2

∣∣2 σu22 + ∣∣ ∂Y ′∂v2 ∣∣2 σv22 + ∣∣ ∂Y ′∂u3

∣∣2 σu23 + ∣∣ ∂Y ′∂v3 ∣∣2 σv23√∣∣ ∂Z′
∂u1

∣∣2 σu21 + ∣∣ ∂Z′∂v1 ∣∣2 σv21 + ∣∣ ∂Z′∂u2 ∣∣2 σu22 + ∣∣ ∂Z′∂v2 ∣∣2 σv22 + ∣∣ ∂Z′∂u3 ∣∣2 σu23 + ∣∣ ∂Z′∂v3 ∣∣2 σv23

 . (31)

σX =

[
1

2b2f2(Y 2 + Z2)2(b2 + 3(X2 + Y 2 + Z2))2
σu2Z2(9X2(X2 + Y 2 + Z2)2(X2Y 2 + (Y 2 + Z2)2) + b6(3X2Y 2 + 2(Y 2 + Z2)2)

+ b4(3X4Y 2 + 4(Y 2 + Z2)2(2Y 2 + Z2) + 3X2(5Y 4 + 4Y 2Z2 − Z4)) + 3b2(−5X6Y 2 + 2(Y 2 + Z2)4 + 3X2(Y 2 + Z2)2(Y 2 + 2Z2) +X4(−4Y 4 + 4Y 2Z2 + 8Z4)))
]1/2

σY =

[
1

6b2f2(Y 2 + Z2)2(b2 + 3(X2 + Y 2 + Z2))2
σu2Z2(b6(3Y 4 + 4Y 2Z2 + 2Z4) + 27Y 2(X2 + Y 2 + Z2)2(X2Y 2 + (Y 2 + Z2)2)

+ 3b4(7Y 6 + 16Y 4Z2 + 13Y 2Z4 + 4Z6 +X2(3Y 4 + 8Y 2Z2 + 4Z4)) + 9b2(X4(Y 4 + 4Y 2Z2 + 2Z4) + (Y 2 + Z2)2(5Y 4 + 6Y 2Z2 + 2Z4) + 2X2(3Y 6 + 10Y 4Z2 + 9Y 2Z4 + 2Z6)))

]1/2
σZ =

[
σu2Z4(b6Y 2 + 3b4(−X2Y 2 + 3Y 4 + 4Y 2Z2 + Z4) + 27(X2 + Y 2 + Z2)2(X2Y 2 + (Y 2 + Z2)2)− 9b2(X4Y 2 − (Y 2 + Z2)2(3Y 2 + 2Z2)− 2X2(Y 4 + 4Y 2Z2 + 3Z4)))

6b2f2(Y 2 + Z2)2(b2 + 3(X2 + Y 2 + Z2))2

]1/2

(32)
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Fig. 12. Visualization of the uncertainty area of the position of
point m based on the view from two cameras. z axis has been
compressed 20× for better clarity. Cameras are placed below the
image and the vertical axis is z.
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Fig. 13. Accuracy of position estimation along z axis, plotted as
standard deviation σZ with varying position Z of pointM .

In order to estimate uncertainty of the estimated location of
pointM depending on uncertainty of image positionsm1,
m2, m3, the obtained formula for estimating position M ′
is expanded into a Taylor series and the uncertainty propa-
gation rule is applied. As in the two-camera case described
above, only uncertainty of the position expressed as stan-
dard deviation is considered and the remaining factors are
known with infinite accuracy – see Eq. (31). Note that σM ′
is a 3-component vector.
After the transformations and by substituting Eq. (2) for
obtaining u1, v1, u2, v2 from X,Y, Z, we get Eq. (32).
The derived formulas are helpful in analyzing the accuracy of
estimating the position of pointm depending on its location
in front of the camera system.
Figure 13 illustrates a function of accuracy∆Z with respect
to the original position Z of pointM , drawn for fov = 60◦,
image resolution 1920×1080 pixels, b = 0.5 m, and perfect
alignment of the system. In Fig. 14, accuracy is expressed as
standard deviation σZ with respect to camera baseline b. We
have assumed that the accuracy of positionsm1,m2 andm3
in the captured images is σu = σv = 1 (within one pixel).
Again, as for the two-camera case, doubling the distance
between cameras lowers uncertainty 2 times (see Fig. 15).

As can be seen from Figs. 5 and 14, the resulting uncertainty
in the Z direction remains unchanged. No improvement is
therefore achieved by adding a third camera in the case of
linear arrangement of the cameras – see Fig. 16.
The key to obtaining a better estimation is to arrange the
cameras so that they are not situated along the same line.
Here, we will analyze a triangular arrangement of 3 devices,
where the cameras are situated at the vertices of an equilateral
triangle, as shown in Fig. 17. The optical axes of all cameras
are once again perpendicular to the plane defined by the
triangle. It needs to be noted that in both arrangements the
baseline between the most distant cameras is the same and
equals 2b.
As already considered above, the largest distance between the
farthest cameras is an important factor limiting the accuracy of
position estimation. Therefore, the biggest baseline between
the cameras is fixed to be the same for both systems, as shown
in Fig. 17.
Solving Eq. (18) for the case with three cameras (N = 3),
with the assumption of a triangular camera arrangement, we
get:

T1 =

[
−b − b

√
3
2
· 1
3
0

]T
T2 =

[
0

b
√
3
2
· 2
3
0

]T
T3 =

[
b

b
√
3
2
· 1
3
0

]T
R1 = R2 = R3 = I

, (33)

K1 = K2 = K3 =


f 0 w

2

0 f h
2

0 0 1

 , (34)

m1 = [u1 v1 1 ]
T

m2 = [u2 v2 1 ]
T

m3 = [u3 v3 1 ]
T

. (35)

σYσX

σZ
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Fig. 14. Accuracy of position estimation along z axis shown as
standard deviation σZ with respect to camera baseline b.
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Fig. 15. Accuracy of position estimation along z axis shown as standard deviation σZ with respect to position Z of pointm and camera
baseline b.
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Fig. 16. Accuracy of position estimation along z axis plotted as stan-
dard deviation σZ with varying position Z of pointM . The system
is made up of 2 and 3 cameras with total baseline (distance between
the farthest cameras) of b = 0.5 m. The curves are overlapping, so
the middle camera in a 3-device setup does not improve the quality
of estimation.
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Fig. 17. Front view of the considered three camera systems.

The same procedure to assess uncertainty of the estimated
location of pointM is used depending on the uncertainty of
the image positionsm1,m2,m3, as well as 1 pixel accuracy
of image positionsm1,m2,m3 localization is assumed.
The result of the analysis is plotted in Fig. 18 as a function
of accuracy, shown as standard deviation σZ with respect
to the original position Z of point M for both linear and
triangular systems, fov = 60◦, image resolution 1920×1080
and b = 0.5 m.
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σ [m]
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σX-linear
σY-linear

σZ-triangular

σX-triangular
σY-triangular

Z   [m]

Fig. 18. Accuracy of position estimation in direction Z expressed as
standard deviation σZ versus position Z of pointm for system with
fov = 60◦, image resolution 1920×1080 and b = 0.5 m.

The plots presented in Figs. 18 and 19 confirm that the
triangular camera arrangement is almost 30% better while
using the same amount of space along the horizontal direction
and the same number of cameras. There is no performance
difference in the accuracy along x and y axes, at least when
comparing a distance greater than twice the baseline Z > 2b.
For smaller distances, the triangular arrangement performs

2 4 6 8 10
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0.6

0.8
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σ-tri/σ-lin

σY-triangular/σY-linear

σX-triangular/σX-linear

σZ-triangular/σZ-linear

Z   [m]

Fig. 19. Accuracy of position estimation along z axis for both setups
with fov = 60◦, image resolution 1920×1080 and b = 0.5 m. The
distance between the two opposite cameras is equal to 1 m.

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY 2/2024 11



Krzysztof Klimaszewski, Tomasz Grajek, and Krzysztof Wegner

b

b

b

y y

x x

2b 1√ 3
2 3

.

b 2√ 3
2 3

.

‒b

‒b

‒b

‒

Fig. 20. Layout of a four-camera system – left, in comparison with
the best three camera system – right.

differently than the linear arrangement, as evidenced in Fig.
19.

3.3. Four Camera System

Lastly, we have investigated whether the addition of a fourth
camera would improve the measurement accuracy. In the
setup under consideration, the cameras are positioned so that
the longest distance between any two cameras is not greater
than 2b and all inter-camera distances are maximized. To
satisfy such requirements, the square camera arrangement is
used, as depicted in Fig. 20.
Again, we have solved Eq. (18) with the considered assump-
tions:

T1 = [−b 0 0 ]T

T2 = [ b 0 0 ]
T

T3 = [ 0 − b 0 ]T

T4 = [ 0 b 0 ]
T

R1 = R2 = R3 = R4 = I

. (36)

K1 = K2 = K3 = K4 =


f 0 w

2

0 f h
2

0 0 1

 , (37)

m1 = [u1 v1 1 ]
T

m2 = [u2 v2 1 ]
T

m3 = [u3 v3 1 ]
T

m4 = [u4 v4 1 ]
T

, (38)

where 2b is the largest camera baseline, f stands for focal
length, w and h are captured image width and height, respec-
tively.
To estimate uncertainty, as in the previous case, we assume
that only uncertainty of the position expressed as standard
deviation is important and the remaining coefficients are
known with infinite accuracy.
Based on the derived equations, we can evaluate the accuracy
expressed as standard deviation σZ versus position Z of point
M for both triangular and square setups (Fig. 21). As one
may see, the additional fourth camera does not improve the
accuracy of the measurement (red and blue lines overlap).
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σZ-square
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σX-square
σY-square

Fig. 21. Accuracy of position estimation along z axis, plotted as
standard deviationσZ versus positionZ of pointmwith fov = 60◦,
image resolution 1920×1080 and b = 0.5 m. The distance between
cameras is as shown in Fig. 20.
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13

0 
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m

Fig. 22. Camera setup used in the experiment. The optical axes of
the cameras are parallel and toward the reader.

Camera setup

Camera setup axis

x

z x–z coordinate
table

Object (LED)

Fig. 23. Experimental setup details seen from above.

4. Experimental Verification
In order to verify the theoretical findings, we have measured by
how much the light source can be moved before any changes
will be observed in the images taken by the multi-camera
acquisition system. As a source of light, we have used small
(0603) red LED mounted on an x–z coordinate table, as such
a setup allows to precisely control the position of the emitter.
The camera rig and the LED have been placed 1 m from the
four camera video acquisition system that is set up according
to the schematic shown in Fig. 22. Three cameras, namely 1,
2 and 3, form a linear acquisition system, while cameras 1, 3
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and 4 make up a triangular acquisition system. Both setups
are similar to those considered previously in Section 3. The
cameras used in the system were GoPro Hero 4 model with
resolution of 1920×1080 pixels.
The light source was positioned at a number of different
locations within a 0.2 mm grid pattern, along x and z axes.
For each position of the LED, the scene was recorded by all
four cameras (Fig. 23).
8×11=88 light source positions were recorded and 8×11×4
= 352 total images were processed. The 2D position of the
LED on those images was estimated with the 1-pixel resolu-
tion, using both coordinates. The results were analyzed for
two different triplets of cameras: the first being the linear ar-
rangement made up of cameras 1, 2, and 3. The other set is
in the triangular arrangement and is made up of cameras 1, 3,
and 4.
For any triplet of the images taken by a given camera set and
for different LED positions, the estimated 3D location of the
LED stays the same if the estimated 2D position of the LED
in all images for that camera triplet remains unchanged. In
other words, for any true LED position in 3D space, as long
as the 2D position in all the images does not change, the 3D
position estimated from the images stays the same. Therefore,
small moves of the LED in front of the camera setup will not
immediately lead to a change in the captured images. There
exist some ∆X and ∆Z by which the LED can be moved
before the LED on the image moves by 1 pixel.
After estimating 2D positions of the LED using all cameras
within the triplets, we cluster the images into groups in
which the estimated 2D LED positions are the same, i.e.
the estimated 3D location of the LED stays the same. Such
clusters for the linear set are presented in Fig. 24 and for the
triangular set in Fig. 25. Both figures represent the map of
the positions of the test object on the x–z plane, being the
plane of movement of the coordinate table – see Fig. 23. The
dots with the same color mark the points on the x–z plane that
would be projected to the same point in 3D space. As one
may notice, in the case of the triangular camera arrangement
the clusters are smaller than in the linear arrangement. This
means that the triangular camera arrangement offers a higher
degree of accuracy for 3D localization of points in 3D space.
For the linear arrangement, the average size is 3.667 mm2,
while for the triangular arrangement it equals 2.514 mm2. The
ratio of the areas equals 0.686 – a result that is very close to
the value shown in Fig. 19 for the z axis. SinceX and Y ratios
are close to 1, the change in the area depends on Z estimation
accuracy. For the 130 mm baseline, the scaled-up distance is
3.85 m and the ∆Ztri∆Zlin

is 0.7. The experimental result agrees
with the theoretical estimation and confirms the outcome of
our theoretical analysis for 3 camera arrangements.

5. Conclusions
In this paper, the problem of estimating the position of 3D
objects (points) based on their 2D projections is presented
and various factors impacting the accuracy of position es-
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Fig. 24. Results for the linear arrangement (cameras 1, 3, and 4 as
shown in Fig. 22). x (horizontal) and z (vertical) axes are scaled in
millimeters. Positions marked with the same color are projected to
the same point in 3D space after reconstruction.
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Fig. 25. Results for the triangular arrangement (cameras 1, 3, and
4 from Fig. 22). x (horizontal) and z (vertical) axes are scaled in
millimeters. Positions marked with the same color are projected to
the same point in 3D space after reconstruction.

timation procedures used in multiview video systems, such
as stereoscopic systems with a parallel optical axis, are an-
alyzed. Based on the results of this research, the design of
the system may be adjusted to achieve the required accuracy
level, either by improving image resolution or increasing the
camera baseline distance.
We have also proven that it is not always beneficial to add
more cameras to existing systems in order to increase their
accuracy. The decision depends on the geometry of the ex-
panded system. For example, two- and three-camera systems
placed along the same line show the same level of accuracy.
A third camera that is not placed in line with the first two de-
vices is the only solution that improves accuracy. Equilateral
triangular camera arrangements outperform linear systems by
30%. Such an arrangement allows to obtain significantly bet-
ter results for the case of ideal cameras, when compared to
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a stereoscopic arrangement or three cameras in line, having
the same resolution as in the triangular setup. In a real-life
system with the same cameras, characterized by certain distor-
tions and noise introduced to the image, such an arrangement
also should outperform the linear setup, since any of the noise
filtering algorithms can be applied, in both cases, with the
same level of efficiency.
Adding a fourth camera while maintaining the same maximum
distance between any two cameras in the set failed to increase
the level of accuracy any further. Hence, the optimal solution
for estimating 3D positions of an object consists in using
a three-camera arrangement instead of the commonly used
stereo pair, with the cameras positioned on the plan of an
equilateral triangle. Such a setup offers, for the same baseline,
a significant improvement in the accuracy of 3D position
estimation when compared to the linear camera. If the number
of cameras is higher than three, no improvement is achieved,
since the average distance between the cameras decreases.
Setups with 2 and 3 cameras are characterized by the highest
average distance between cameras which is equal to the
baseline.
The theoretical results were confirmed by an experiment with
different camera arrangements.
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Appendix
Proof of formula (16) presented in Subsection 2.2.
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