PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance Analysis of LEACH with Deep Learning in Wireless Sensor Networks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thousands of low-power micro sensors make up Wireless Sensor Networks, and its principal role is to detect and report specified events to a base station. Due to bounded battery power these nodes are having very limited memory and processing capacity. Since battery replacement or recharge in sensor nodes is nearly impossible, power consumption becomes one of the most important design considerations in WSN. So one of the most important requirements in WSN is to increase battery life and network life time. Seeing as data transmission and reception consume the most energy, it’s critical to develop a routing protocol that addresses the WSN’s major problem. When it comes to sending aggregated data to the sink, hierarchical routing is critical. This research concentrates on a cluster head election system that rotates the cluster head role among nodes with greater energy levels than the others.We used a combination of LEACH and deep learning to extend the network life of the WSN in this study. In this proposed method, cluster head selection has been performed by Convolutional Neural Network (CNN). The comparison has been done between the proposed solution and LEACH, which shows the proposed solution increases the network lifetime and throughput.
Rocznik
Strony
799--805
Opis fizyczny
Bibliogr. 15 poz., rys., tab., wykr.
Twórcy
  • Gujarat Technological University, Ahmedabad, Gujarat, India
autor
  • Parul University, Vadodara, Gujarat, India
Bibliografia
  • [1] B. Rashid and M. H. Rehmani, “Applications of wireless sensor networks for urban areas: A survey,” Journal of Network and Computer Applications, vol. 60, pp. 192–219, 2016. [Online]. Available: https://doi.org/10.1016/j.jnca.2015.09.008.
  • [2] P. S. Mann and S. Singh, “Energy-efficient hierarchical routing for wireless sensor networks: A swarm intelligence approach,” Wireless Personal Communications, vol. 92, pp. 785–805, 2017. [Online]. Available: https://doi.org/10.1007/s11277-016-3577-1.
  • [3] P. Nayak and A. Devulapalli, “A fuzzy logic-based clustering algorithm for wsn to extend the network lifetime,” IEEE Sensors Journal, vol. 16, no. 1, pp. 137-144, 2016. [Online]. Available: https://doi.org/10.1109/JSEN.2015.2472970.
  • [4] W. Abidi and T. Ezzedine, “New approach for selecting cluster head based on leach protocol for wireless sensor networks,” in ENASE, 2017.
  • [5] V. Rahmati, “Near optimum random routing of uniformly load balanced nodes in wireless sensor networks using connectivity matrix,” Wireless Personal Communications, vol. 116, pp. 1-17, 02 2021. [Online]. Available: https://doi.org/10.1007/s11277-020-07829-7.
  • [6] M. Ahmad Jan, P. Nanda, M. Usman, and X. He, “Pawn: a payload-based mutual authentication scheme for wireless sensor networks: Pawn,” Concurrency and Computation: Practice and Experience, vol. 29, 10 2016. [Online]. Available: https://doi.org/10.1002/cpe.3986.
  • [7] Q. Mao, F. Hu, and Q. Hao, “Deep learning for intelligent wireless networks: A comprehensive survey,” IEEE Communications Surveys Tutorials, vol. 20, no. 4, pp. 2595-2621, 2018. [Online]. Available: https://doi.org/10.1109/COMST.2018.2846401 .
  • [8] Y. Liang and H. Mei, “Dynamic bandwidth allocation based on online traffic prediction for real-time mpeg-4 video streams,” EURASIP Journal on Advances in Signal Processing, vol. 2007, 01 2007. [Online]. Available: https://doi.org/10.1155/2007/87136.
  • [9] Z. M. Fadlullah, F. Tang, B. Mao, N. Kato, O. Akashi, T. Inoue, and K. Mizutani, “State-of-the-art deep learning: Evolving machine intelligence toward tomorrow’s intelligent network traffic control systems,” IEEE Communications Surveys Tutorials, vol. 19, no. 4, pp. 2432-2455, 2017. [Online]. Available: https://doi.org/10.1109/COMST. 2017.2707140.
  • [10] R. Xu and D. Wunsch, “Survey of clustering algorithms,” IEEE Transactions on Neural Networks, vol. 16, no. 3, pp. 645–678, 2005. [Online]. Available: https://doi.org/10.1109/TNN.2005.845141.
  • [11] R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, “Convolutional neural networks: an overview and application in radiology,” Insights into imaging, vol. 9, no. 4, pp. 611-629, 2018. [Online]. Available: https://doi.org/10.1007/s13244-018-0639-9.
  • [12] S. Indolia, A. Goswami, S. Mishra, and P. Asopa, “Conceptual understanding of convolutional neural network-a deep learning approach,” Procedia Computer Science, vol. 132, pp. 679-688, 01 2018. [Online]. Available: https://doi.org/10.1016/j.procs.2018.05.069.
  • [13] T. M. Behera, S. K. Mohapatra, U. C. Samal, M. S. Khan, M. Daneshmand, and A. H. Gandomi, “Residual energy-based cluster-head selection in wsns for iot application,” IEEE Internet of Things Journal, vol. 6, no. 3, pp. 5132-5139, 2019. [Online]. Available: https://doi.org/10.1109/JIOT.2019.2897119.
  • [14] J. Wu, “Introduction to convolutional neural networks,” 2017.
  • [15] K. O’Shea and R. Nash, “An introduction to convolutional neural networks,” ArXiv, vol. abs/1511.08458, 2015. [Online]. Available: https://doi.org/10.48550/arXiv.1511.08458.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1da6b3d9-a0a6-453c-bb9b-212835f56216
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.