PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Global existence for strong solutions of viscous Burgers equation. (1) The bounded case

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We prove that the viscous Burgers equation (∂t−∆)u(t, x)+( u •∇)u(t, x) = g(t, x), (t, x) ∈ R+ × Rd (d ≥ 1) has a globally defined smooth solution in all dimensions provided the initial condition and the forcing term g are smooth and bounded together with their derivatives. Such solutions may have infinite energy. The proofdoes not rely on energy estimates, but on a combinationof the maximumprinciple and quantitative Schauder estimates. We obtain precise bounds on the sup norm of the solution and its derivatives, making it plain that there is no exponential increase in time. In particular, these bounds are time-independent if g is zero. To get a classical solution, it suffices to assume that the initial condition and the forcing term have bounded derivatives up to order two.
Rocznik
Strony
109--136
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
  • Institut Elie Cartan∗, Universite´ de Lorraine, B.P. 239, F – 54506 Vandœuvre-le`s-Nancy Cedex, France
Bibliografia
  • [1] Alibaud, N., Imbert, C., Karch, G. (2010) Asymptotic properties of entropy solutions to fractal Burgers equation. SIAM J. Math. Anal. 42, 354–376.
  • [2] Amour, L., Ben-Artzi, M. (1998) Global existence and decay for viscous HamiltonJacobi equations. Nonlinear Analysis, Theory, Methods and Applications 31, 621–628.
  • [3] Bec, J., Khanin, K. (2007) Burgers turbulence. Phys. Rep. 447, 1–66.
  • [4] Biler, P., Funaki,T., Woyczynski, W. (1998) Fractal Burgers equations. Journal Diff. Eq. 148, 9–46.
  • [5] Chan, C. H., Czubak, M. (2010) Regularity of solutions for the critical N-dimensional Burgers equation. Ann. Inst. H. Poincare´ (C) Non Linear Analysis 27, 471–501.
  • [6] Constantin, P., Cordoba, D., Wu, J. (2001) On the Critical Dissipative Quasi-geostrophic Equation. Indiana University Mathematics Journal 50 (Special Issue), 97– 107.
  • [7] Da Prato, G., Debussche, A., Temam, R. (1994) Stochastic Burgers equation. NoDEA Nonlinear Differential Equations Appl. 1 (4), 389–402.
  • [8] Dermoune, A. (1997) Around the stochastic Burgers equation. Stoch. Anal. Appl. 15 (3), 295–311.
  • [9] Droniou, J., Gallou¨et, T., Vovelle, J. (2002) Global solution and smoothing effect for a non-localregularizationof a hyperbolicequation. J. Evol. Equ. 3, 499–521.
  • [10] Droniou, J., Imbert, C. (2006) Fractal first order partial differential equations. Arch. Rat. Mech. Anal. 182, 299–331.
  • [11] Friedman, A. (1964) Partial Differential Equations of Parabolic Type. Prentice-Hall.
  • [12] Kaplan, S. (1963) On the growth of solutions of quasilinear parabolic equations. Comm. Pure Appl. Math. 16, 305–333.
  • [13] Kipnis, C., Landim, C. (1999) Scaling limits of interacting particle systems. Grundlehren der Mathematischen Wissenschaften, 320, Springer-Verlag.
  • [14] Kiselev, A. A., Ladyzhenskaya, O. A. (1957) On the existence and uniqueness of the solution of the nonstationary problem for a viscous, incompressible fluid (in Russian). Izv. Akad. Nauk SSSR. Ser. Mat. 21, 655–680.
  • [15] Lieberman, G. M. (1996) Second Order Parabolic Differential Equations. World Scientific.
  • [16] Majda, A.J., Bertozzi, A. L. (2002) Vorticity and Incompressible Flow. Cambridge Texts in Applied Mathematics. Cambridge University Press.
  • [17] Mendl, C. B., Spohn, H. (2016)Searchingforthe Tracy-Widomdistributionin nonequilibrium processes. Statistical Mechannics, arXiv.org/abs/1512.06292.
  • [18] Schonbek, M. (1980) Decay of solutions to parabolic conservation laws. Commun. PDEs 7 (1), 449–473.
  • [19] Spohn, H. (1991) Large Scale Dynamics of Interacting Particles. Texts and Monographs in Physics, Springer-Verlag.
  • [20] Spohn, H. (2016)The Kardar-Parisi-Zhangequation - a statistical physics perspective. Statistical Mechanics, arXiv.org/abs/1601.00499.
  • [21] Taylor, M. (2011) Partial Differential Equations. III Nonlinear Equations. Applied Mathematical Sciences, 117, Springer.
  • [22] Unterberger, J. (2017a) Global existence and smoothness for solutions of viscous Burgersequation. (2) The unboundedcase: a characteristic flow study, arXiv:151 0.01539 [math.AP].
  • [23] Unterberger, J. (2017b) Time decay for solutions of viscous transport or Burgers equation, in preparation. Unterberger, J. (2017c)GeneralizedPDE estimates for KPZ equationsthroughHamilton-Jacobi-Bellman formalism, arXiv:1312.5293 [math.AP].
  • [24] Wang, X.-J. (2006) Schauder estimates for elliptic and parabolic equations. Chin. Ann. Math. 27B(6), 637–642.
  • [25] Weinan E, Khanin, K., Mazel, A., Sinai, Y. (2000) Invariant measures for Burgers equation with stochastic forcing. Annals of Mathematics 151, 877-960.
  • [26] Woyczynski, W. (1998) Burgers-KPZ Turbulence: Gottingen Lectures. Lecture Notes in Mathematics 1700, Springer, Berlin.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1da4a147-2226-4f5d-831d-c3c33b7425d3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.