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Abstract: We prove that the viscous Burgers equation (∂t −∆)u(t, x)+
(u · ∇)u(t, x) = g(t, x), (t, x) ∈ R+ × Rd (d ≥ 1) has a globally defined
smooth solution in all dimensions provided the initial condition and the
forcing termg are smooth and bounded together with their derivatives.
Such solutions may have infinite energy. The proof does not rely on energy
estimates, but on a combination of the maximum principle andquantitative
Schauder estimates. We obtain precise bounds on the sup normof the
solution and its derivatives, making it plain that there is no exponential
increase in time. In particular, these bounds are time-independent ifg
is zero. To get a classical solution, it suffices to assume that the initial
condition and the forcing term have bounded derivatives up to order two.

Keywords: viscous Burgers equation, conservation laws, maximum
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1. Introduction and scheme of proof

1.1. Introduction

The (1+ d)-dimensional viscous Burgers equation is the following non-linear PDE,

(∂t − ν∆ + u · ∇)u = g, u
∣

∣

∣

t=0
= u0 (1.1)

for a velocityu = u(t, x) ∈ Rd (d ≥ 1), (t, x) ∈ R+ × Rd, whereν > 0 is a viscos-
ity coefficient,∆ the standard Laplacian onRd, u · ∇u =

∑d
i=1 ui∂xi u the convection

term, andg a continuous forcing term. Among other things, this fluid equation, which
describes the hydrodynamical limit of interacting particle systems (Spohn, 2016; Kip-
nis and Landim, 1999), is a simplified version without pression of the incompressible
Navier-Stokes equation, and also (assumingg to be random, which turns (1.1) into
a so-called stochastic Burgers equation) an interesting model for the study of traffic
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jams, and an interesting toy-model for Navier-Stokes’ equation, and, in particular, for
the study of turbulence (so-called ”Burgulence”), see, e.g., Bec and Khanin (2007),
E, Khanin, Mazel and Sinai (2000), Woyczynski (1998). Note that gradient solutions
of the stochastic Burgers equation are gradients of solutions of the celebrated Kardar-
Parisi-Zhang (KPZ) equation, on which (particularly in one-space dimension, where
its highly non-trivial large-scale Tracy-Widom limit appears to arise in many non-
equilibrium processes in statistical physics, see, e.g., Mendl and Spohn, 216; Spohn,
1991, for recent perspectives) there is now an immense and quickly evolving literature.

The present study is purely mathematical: we show under the assumptions onu0

andg, provided further on in this section, that the Cauchy problem

(∂t − ν∆ + u · ∇)u = g, u
∣

∣

∣

t=0
= u0 (1.2)

has a unique, globally defined, classical solution inC1,2 (i.e. continuously differentiable
in the time coordinate and twice continuously differentiable in the space coordinates),
and provide explicit bounds for the supremum ofu and its derivatives up to second
order.

Before we go further, let us mention for the sake of the readerthatut, gt, · · · are the
valuesat timet of u, g, · · · andnottheir time-derivatives (in discrepancy with a notation
widely used in particular by specialists of integrable systems, but in accordance with
probabilists’ notations!).

Assumptions:
(i) (initial condition) u0 ∈ C2 and∇2u0 is α-Hölder for everyα ∈ (0, 1); for κ =

0, 1, 2, ||∇κu0||∞ := supx∈Rd |∇κu0(x)| < ∞;
(ii) (forcing term) on every subset[0,T] × Rd with T > 0 finite, g is bounded

andα-Hölder continuous for everyα ∈ (0, 1); furthermore, g is C1,2 and t 7→
||∇κgt||∞ := supx∈Rd |∇κgt(x)|, t 7→ ||∂tgt||∞ := supx∈Rd |∂tgt(x)| are locally inte-
grable in time.

For convenience, we redefinet̃ = νt, ũ = ν−1u, g̃ = ν−2g. The rescaled equation,
(∂t̃ − ∆− ũ · ∇)ũ = g̃, has viscosity 1. We skip the tilde in the sequel. Our bounds blow
up in the vanishing viscosity limitν → 0 (see Remarks after Theorem 1 for a precise
statement).

Our approach is the following. We solve inductively the linear transport equations,

u(−1) := 0; (1.3)

(∂t − ∆ + u(m−1) · ∇)u(m) = g, u(m)
∣

∣

∣

t=0
= u0 (m≥ 0). (1.4)

If the sequence (u(m))m converges in appropriate norms, then the limit is a fixed point
of (1.4), hence solves the Burgers equation. Let|| ||α denote either the isotropic Hölder
semi-norm onRd,

||u0||α := sup
x,y∈Rd

|u0(x) − u0(y)|
|x− y|α ,
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or the parabolic Hölder semi-norm onR+ × Rd,

||g||α := sup
(s,x),(t,y)∈R+×Rd

|g(s, x) − g(t, y)|
|x− y|α + |t − s|α/2

(see Section 4 for more on Hölder norms).

Definition 1 Let, for c> 0,

K0(t) := ||u0||∞ +
∫ t

0
ds||gs||∞ (1.5)

K1(t) := ||∇u0||∞ +
∫ t

0
ds||∇gs||∞ (1.6)

K2(t) := ||∇2u0||∞ + ||u0||∞||∇u0||∞ + ||g0||∞ +
∫ t

0
ds

(

||∇2gs||∞ + ||∂sgs||∞
)

(1.7)

K2+α(t) := ||∇2u0||α + ||gs||α,[0,t]×Rd, α ∈ (0, 1) (1.8)

and

K(t) := c2
(

K0(t)2 + K1(t) + K2(t)2/3 + K2+α(t)2/(3+α)
)

. (1.9)

Note thatK0(t),K1(t),K2(t),K2+α(t),K(t) < ∞ for all t ≥ 0 andα ∈ (0, 1) under the
above Assumptions.

Our main result is the following.

Theorem 1 For everyβ ∈ (0, 1
2), there exists an absolute constant c= c(d, β) ≥ 1,

depending only on the dimension and on the exponentβ, such that the following holds:
(i) (uniform estimates)

||u(m)
t ||∞ ≤ K0(t), ||∇u(m)

t ||∞ ≤ K(t); ||∂tu
(m)
t ||∞, ||∇2u(m)

t ||∞ ≤ (cK(t))3/2

(1.10)

(ii) (short-time estimates) define v(m) := u(m) − u(m−1) for m ≥ 1. If 0 ≤ t ≤ T and
t ≤ m/cK(T), then

||v(m)
t ||∞ ≤ cK0(T)(cK(T)t/m)m, ||∇v(m)

t ||∞ ≤ cK(T)(cK(T)t/m)βm. (1.11)

Let us comment on these estimates.

Remarks:
1. The different powers in the expression ofK(t) come from the dimension counting

dictated by the Burgers equation: the diffusion term∆u, the convection termu·∇u
and the forcingg are homogeneous ifu scales likeL−1, whereL is a reference
space scale, andg like (LT)−1, whereT is a reference time scale. Assuming
parabolic scaling,K−1(t) scales like time and plays the rôle of a reference time
scaleT(t) at timet, leading to a time-dependent space scaleL = L(t) ∼ K−

1
2 (t).

The scaling of the otherK-parameters isK0 ∼ T−
1
2 ; K1,K ∼ T−1; K2 ∼ T−3/2;

K2+α ∼ T−(3+α)/2.



112 J. Unterberger

2. The first uniform estimate

||u(m)
t ||∞ ≤ K0(t) (1.12)

follows from a straightforward application of the maximum principle to the trans-
port equation (1.4).

3. (uniform estimates for the gradient). The functionu(0) satisfies the linear heat
equation (∂t−∆)u(0) = g, whose explicit solution isu(0)(t) = et∆u0+

∫ t

0
dse(t−s)∆gs.

Thus

||∇u(0)
t ||∞ ≤ ||∇u0||∞ +

∫ t

0
ds||∇gs||∞ = K1(t). (1.13)

Clearly, K1(t) ≤ K(t). Estimates for further iteratesu(1), u(2), . . . involve K(t)
instead ofK1(t).

4. Fix a time horizonT > 0 and consider the series

S(t) :=
+∞
∑

m=0

v(m)
t =

+∞
∑

m=0

(u(m)
t − u(m−1)

t )

for t ≤ T (note that, by definition,v(0) := u(0) − u(−1) = u(0)). The short-time
estimates (1.11) imply thatS(t) is absolutely convergent. More precisely, letting
m0 := ⌊cK(T)t⌋ andγ := 1,

||u(n)
t ||∞ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

m=0

(u(m)
t − u(m−1)

t )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞

≤ ||u(m0)
t ||∞ +

+∞
∑

m=m0+1

||v(m)
t ||∞

≤ K0(T)















1+ c
+∞
∑

m=m0+1

(cK(T)t/m)γm














(1.14)

for all n ≥ m0. Let m > m0 andx = 1 − cK(T)t/m ∈ [0, 1]: using 1− x ≤ e−x,
one gets (cK(T)t/m)γm = (1− x)γm ≤ eγcK(T)te−γm and

+∞
∑

m=m0+1

(cK(T)t/m)γm ≤ eγcK(T)t
+∞
∑

m=m0+1

e−γm ≤ eγ/(eγ − 1). (1.15)

Hence,||u(n)
t ||∞ . K0(T). In a similar way, lettingγ := β this time, one shows that

||∇u(n)
t ||∞ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

m=0

(∇u(m)
t − ∇u(m−1)

t )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞

. K(T). (1.16)

These estimates are best whent = T; one then retrieves the uniform estimates
(1.10) up to some constant.

5. (short-time estimates) Bounds (1.11) are of orderO((Ct)γm/(m!)γ), γ = 1 or β,
and are obtained bymsuccessive integrations. For linear equations, or equations
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with bounded, uniformly Lipschitz coefficients, successive integrations typically
yield O((Ct)m/m!). The Burgers equation, on the other hand, is strongly non-
linear. While using precise Schauder estimates to obtain the gradient bound in
(1.11), one stumbles into the conditionβ < 1

2 at the very end of section 3 which
apparently cannot be improved.

6. (blow-up of the above estimates in the vanishing viscosity limit) By undoing the
initial rescaling, we obtainν-dependent estimates,

||ut||∞ ≤ K0(t), ||∇ut||∞ . ν−1K(t), ||∂tut||∞ . ν−1K(t)3/2, ||∇2ut||∞ . ν−2K(t)3/2

(1.17)

with K0(t),K1(t) as in (1.5), (1.6),

K2(t) := ν||∇2u0||∞ + ||u0||∞||∇u0||∞ + ||g0||∞ +
∫ t

0
ds(ν||∇2gs||∞ + ||∂sgs||∞),

K2+α(t) := ν||∇2u0||α + sup
α∈[0,t]

||gs||α

and
K(t) := K0(t)2 + νK1(t) + (νK2(t))2/3 + (ν1+αK2+α(t))2/(3+α).

Thus, the derivative bounds||∇κut||∞, κ = 1, 2 and||∂tu||∞ blow up at different
rates whenν→ 0.

From the above theorem, one deduces easily that the solutionof the Burgers equa-
tion is smooth onR+ × Rd, provided (i)u0 is smooth and its derivatives are bounded;
(ii) g is smooth and its derivatives are bounded on [0,T] × Rd for all T:

Corollary 1 Assume u0 and g are smooth, and ||∇κu0||∞ < ∞ (κ = 0, 1, 2, . . .),
||∂µt ∇κgt||∞ < C(µ, κ,T), µ, κ = 0, 1, 2, . . . for every t≤ T. Then the Burgers equation
(1.1) has a unique smooth solution u such that||∂µt ∇κut||∞ < C′(µ, κ,T) for everyµ, κ
and t≤ T. In particular, C′(µ, κ, t) = C′(µ, κ) is uniform in time if g= 0.

We do not prove this corollary, since it results from standard extension to higher-
order derivatives of the initial estimates of Section 2, andan equally standard iterated
use of Schauder estimates to derivatives of Burgers equation.

Our results extend without any modification to nonlinearities of the typeF(u) · ∇u
with smooth matrix-valued coefficient F if F is sublinear, and even (with different
scalings and exponents for theK-constants) to the case whenF has polynomial growth
at infinity.

Let us compare these with the results available in the literature. The one-dimensio-
nal cased = 1 or the irrotationald-dimensional case withg = ∇ f of gradient form,
is exactly solvable through the Cole-Hopf transformationu = ∇ logφ, which reduces
it to a scalar, linear PDE∂tφ = ν∆φ + fφ; note also that logφ is a solution of the
KPZ (Kardar-Parisi-Zhang) equation. In that case the equation is immediately shown
to be well-defined for everyt > 0 under our hypotheses, and estimates similar to ours
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are easily obtained; specifically, ind = 1, an invariant measure is known to exist
if g is, e.g., a space-time white noise, see Da Prato, Debussche and Temam (1994).
For periodic solutions on the torus in one dimension, the above results extend to the
vanishing viscosity limit, see E, Khanin, Mazel and Sinai (2000). The reader may refer,
e.g., to Dermoune (1997) for a more extended bibliography.

So, our result is mostly interesting ford ≥ 2; as mentioned above, our scheme
of proof extends to more general non-linearities of the formF(u) · ∇u, for which the
equation is not exactly solvable in general. In this setting, the classical result of 1957 is
due to Kiselev and Ladyzhenskaya (1957). The authors consider solutions in Sobolev
spaces and use repeatedly the energy estimates. They work ona bounded domainΩ
with Dirichlet boundary conditions, but their results extend with minor modifications
to the caseΩ = Rd. If u0 ∈ H s with s> d/2, then||u0||∞ < ∞ by Sobolev’s imbedding
theorem. Then, the maximum principle gives||ut||∞ ≤ ||u0||∞ as long as the solution
is classical; this key estimate allows one to bootstrap and get bounds for higher-order
Sobolev spaces, which increase exponentially in time, e.g.||ut||H1 = O(ec||u0||2∞t), as this
follows from the proof of Lemma 3 in Kiselev and Ladyzhenskaya (1957). Compared
to these estimates, ours present two essential improvements: (i) we do not assume any
decrease of the data at spatial infinity, so that they do not necessarily belong to Sobolev
spaces; (ii) more importantly, perhaps, our bounds do not increase exponentially in
time; in the case the right-hand sideg vanishes identically, they are even uniform in
time,K0(t),K(t) ≤ C, whereC is a constant depending only on the initial condition.

The more recent theoretical PDE literature around Burgers’equation is typically
concerned with far-reaching generalization of results such as global existence in Sobo-
lev or L∞ spaces, long-time decay either to zero or to a scaling solution for Burgers-
type equations (depending on whether the linear term or the non-linear term is more
relevant), etc., for models with viscosity induced by a fractional Laplacian, see e.g.
Alibaud, Imbert and Karch (2010), Biler, Funaki and Woyczynski (1998), Chan and
Czubak (2010), Constantin, Cordoba and Wu (2001), Droniou,Gallouët and Vovelle
(2002), Droniou and Imbert (2006). There, the general interest is to understand, using
different techniques (Lp-inequalities à la Schonbek, 1980, De Giorgi theory, maximum
principle, viscosity theory, etc.) the smoothing effect induced by the viscosity, under-
stood as a possibly non-local regularization of a hyperbolic equation. Despite the fact
that the maximum principle extends to vector-valued parabolic equations, the more so-
phisticated tools used there are applied only to scalar equations, sometimes only in one
spatial dimension. It cannot be excluded that our scheme (1.4), coupled with more re-
fined analytical tools, may help provide alternative (possibly somewhat simpler) proofs
for existence of classical solutions for such equations.

Let us finally comment on our choice of approximation scheme (1.4) and provide
some perspectives. Simple as it is, its power is best revealed by solving the transport
equations by the method of characteristics. For zero or almost zero viscosity, these
characteristics are essentially deterministic, and the scheme falls apart. The best way
to understand this is to consider a compactly supported initial conditionu0. Forν = 0,
u(0) = u0, and it is easy to prove by considering the characteristics that the support of
u(1) is included in the support ofu0. By induction, the support of the sequence (u(m))m≥0

does not increase, thus the solution cannot converge, in general, to the solution of the
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inviscid Burgers equation. Reasoning the other way round, it appears that the noisy
behaviour of characteristics is a central feature of this scheme. In fact, much more
can be said about the behaviour of the viscous Burgers equation by studying these, see
our articles in preparation, Unterberger (2017a,b). In theclosely related framework
of the Kardar-Parisi-Zhang (KPZ) equation, the Hamilton-Jacobi-Bellman formalism
yields a representation of the solution as the infimum of somefunctional depending on
random characteristics, see Unterberger (2017c), which was actually the starting point
for this sequence of articles on Burgers’ equation. Drawingon these successes, we plan
to investigate numerically the open questions on the large-time behaviour of Burgers’
equation using (1.4).

1.2. Scheme of proof

Recall that we solve inductively the following linear transport equations, see (1.4),

u(−1) := 0; (1.18)

(∂t − ∆ + u(m−1) · ∇)u(m) = g, u(m)
∣

∣

∣

t=0
= u0 (m≥ 0). (1.19)

Under the first set of assumptions, standard results on linear equations show thatu(m),
m ≥ 0 is C1,2. Assumewe manage to prove locally the uniform convergence of
u(m),∇u(m),∇2u(n) whenm → ∞. Then, there existsu ∈ C1,2 such that locally uni-
formly u(m) → u, ∇u(m) → ∇u, ∇2u(m) → ∇2u and∂tu(m) → ∂tu. Hence,∂tu(m) =

∆u(m) − u(m−1) · ∇u(m) + g converges locally uniformly to∆u − u · ∇u + g, and∂tu =
limm→∞ ∂tu(m) = ∆u − u · ∇u + g. In other words, the limitu is aC1,2 solution of the
Burgers equation.

The key point in our scheme is to prove the locally uniform convergence ofu(m)

and∇u(m), and to show uniform bounds in Hölder norms for second orderderivatives
∇2u(m), ∂tu(m); a simple argument (see below) yields then the convergence of second
order derivatives, allowing for application of the above elementary argument. The basic
idea is to rewriteu as

∑+∞
m=0 v(m), with v(m) := u(m) − u(m−1), and to show that the series

is convergent, uniformly in space and locally uniformly in time.

In the sequel we fix a constantc ≥ 1 such that Theorem 1 holds and let

K̄0(t) := cK0(t), K̄1(t) := cK1(t), K̄(t) := cK(t) (1.20)

to simplify notations.

The proof relies on two main ingredients:a priori estimatescoming from the max-
imum principle; andSchauder estimates. Schauder estimates are difficult to find in a
precise form, suitable for the kind of applications we have in view, so the reader will
find in the appendix a precise version of these estimates, seeProposition 1, following
a multi-scale proof introduced by X.-J. Wang. These imply inparticular the following

Lemma 1 Let 0 ≤ t ≤ T. Then

||∂tu
(m)||α,[0,T]×Rd , ||∇2u(m)||α,[0,T]×Rd ≤ K̄(T)(3+α)/2. (1.21)
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Lemma 1 is proved in Section 3, alongside with Theorem 1.

We now use a classical result about Hölder spaces: letCα(Q), with Q ⊂ R × Rd

compact, be the Banach space ofα-Hölder functions onQ equipped with the norm
|||u|||α := ||u||∞,Q + ||u||α,Q. Then, the injectionCα

′
(Q) ⊂ Cα(Q) is compact for every

α′ < α. In particular, Lemma 1 implies the existence of a subsequence (u(nm))m such
that ∇2u(nm) →m→∞ v in Cα

′
-norm. On the other hand, as discussed in Remark 4

above,u(m) → u and∇u(m) → ∇u in the sup norm for someu ∈ C0,1. Hence,u is
twice continuously differentiable in the space variables, and∇2u = v. Now, every
subsequence (∇2u(n′m))m converges to the same limit,∇2u. Hence,∇2u(n) → ∇2u in
Cα

′
. In a similar way, one proves thatu is continuously differentiable in the time

variable, and∂tu = limm→∞ ∂tu(m) in Cα
′
. In particular,u ∈ C1,2, and the arguments

given at the very beginning of the present subsection show thatu is a classical solution
of the Burgers equation. Note that we may reach the same conclusion even if we
do not know that the series||∇u(m+1) − ∇u(m)||∞,Q converges. Actually, the bound on
||∇u(m+1) − ∇u(m)||∞,Q is the trickiest one. We felt, however, that it was one of the most
unexpected estimates we had obtained, and thus worth including.

Notations.For f , g : X → R+ two positive functions on a setX, we write f (u) .
g(u) if there exists a constantC = C(d) depending only on the dimension such that
f (u) ≤ Cg(u). (If C depends on other parameters, notably onc, then we write explicitly
the dependence on them, so that we make it clear that we do not get unwanted extra
multiplicative factorsO(cm) in the formulas which would invalidate the proofs).

2. Initial estimates

Initial estimates are different in spirit from those of the next section, since they cannot
rely on Schauder estimates. Instead, we use a Gronwall-typelemma based on the
maximum principle.

Lemma 2 (Gronwall lemma) Letφ : R+ × Rd → Rd, respectively

φ̄ : R+ × Rd → Rd

be the solution of the transport equation(∂t − ∆ + b · ∇ − c)φ = f , respectively(∂t −
∆ + b̄ · ∇ − c̄)φ̄ = f̄ , with the same initial condition,φ

∣

∣

∣

t=0
= φ̄

∣

∣

∣

t=0
; the coefficients

c = c(t, x), c̄ = c̄(t, x) ∈ Md×d(R) are matrix-valued, and b, b̄, c, c̄ are assumed to be
bounded and continuous, together with their first derivatives. Let v:= φ̄ − φ. Then

||vt||∞ ≤
∫ t

0
ds A(s, t) ||b̄s− bs||∞ ||∇φs||∞ +

∫ t

0
ds A(s, t) |||c̄s− cs|||∞ ||φs||∞

+

∫ t

0
ds A(s, t) || f̄s− fs||∞, (2.1)

where||| · |||∞ is the supremum overRd of the operator norm in Md×d(R), and A(s, t) =
exp

∫ t

s
|||c̄r |||∞dr.
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Proof. By subtracting the PDEs, satisfied byφ andφ̄, one gets

(∂t − ∆ + b̄ · ∇ − c̄)v = −(b̄− b) · ∇φ + ( f̄ − f ) + (c̄− c)φ. (2.2)

A simple application of fixed-point theorem in the Banach space

W1,∞([0,T]) := {u ∈ L∞([0,T] × Rd) | |∇u| ∈ L∞([0,T] × Rd)}

as in Amour and Ben Artzi (1998, Prop. 2.1), forT small enough, implies local-in-time
existence forv; since the equation is linear, bounds for||uT ||L∞ , ||∇uT ||L∞ are linear in
terms of||u0||L∞ , ||∇u0||L∞ , whence the argument may be repeated over intervals of time
[T, 2T], [2T, 3T], . . . and yields global existence.

Letting ṽt := A(0, t)−1vt in (2.2), we find

(∂t − ∆ + b̄ · ∇ − c̃)ṽ = A(0, t)−1
(

−(b̄− b) · ∇φ + ( f̄ − f ) + (c̄− c)φ
)

(2.3)

where now ˜c(t, x) := c̄(t, x) − |||c̄t|||∞ ≤ 0. Hence, as an application of the parabolic
comparison principle in unbounded space, e.g. in the form found in Kaplan (1963), in
the much wider context of semi-linear parabolic equations,

||ṽt||∞ ≤
∫ t

0
ds A(0, s)−1 ||b̄s− bs||∞ ||∇φs||∞ +

∫ t

0
ds A(0, s)−1 |||c̄s− cs|||∞ ||φs||∞

+

∫ t

0
ds A(0, s)−1 || f̄s − fs||∞, (2.4)

implying (2.1).

Definition 2 Let tinit := inf
{

t > 0; tK̄(t) = 1
}

.

By hypothesis,tinit > 0. If u0 ≡ 0 andg ≡ 0, thentinit = +∞ and the solution of
Burgers’ equation is simply 0. The case ofu0=Cst,∇g = 0 reduces to the previous
one by the generalized Galilean transformationx 7→ x +

∫ t

0
a(s)ds, u 7→ u − a with

a(t) = u0 +
∫ t

0
gsds. We henceforth exclude this trivial case, so thattinit ∈ (0,+∞).

Theorem 2 (initial estimates) Let t≤ tinit . Then the following estimates hold:
(i)

||u(m)
t ||∞ ≤ K0(tinit), ||∇u(m)

t ||∞ ≤ K(tinit); ||∂tu
(m)
t ||∞, ||∇2u(m)

t ||∞ ≤ K̄(tinit)3/2.

(2.5)

Furthermore,

||∂tu
(m)
t ||α, ||∇2u(m)

t ||α ≤ CK̄(tinit)(3+α)/2 (2.6)

with C = C(d, α).
(ii) let m ≥ 1, then

||v(m)
t ||∞ ≤ K̄0(tinit)(K̄(tinit)t/m)m, ||∇v(m)

t ||∞ ≤ K̄(tinit )(K̄(tinit)t/m)m. (2.7)
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Remarks.
1. Let T ≤ tinit , then (2.5), (2.6) and (2.7) remain true fort ≤ T if one replaces

K0(tinit ), K̄0(tinit), K(tinit ), K̄(tinit ) by K0(T), K̄0(T), K(T), K̄(T). Hence Theorem
1 is proved fort ≤ tinit (actually withβ = 1).

2. The value oftinit depends on the choice ofc. We provide in the course of the
proof a rather explicit minimal value ofc, for which (2.5), (2.6), (2.7) hold.
Further estimates in the next section may require a larger value ofc.

3. From Hölder interpolation estimates (see Lemma 3), one also has a bound for
lower-order Hölder norms,

||u(m)||α . K0(tinit )
1−αK̄(tinit)

α + K1−α/2
0 (tinit)K̄

3α/4(tinit ), (2.8)

and, for fixeds≤ tinit ,

||∇u(m)
s ||α . K1−α(tinit )K̄(tinit )

3α/2. (2.9)

Proof. Let us abbreviateK0(tinit ), K̄0(tinit ), K1(tinit), K̄1(tinit), K(tinit ), K̄(tinit) to
K0, K̄0, K1, K̄1, K, K̄.

(i) We first prove estimates (i) by induction, assuming them to be proved form− 1.
Note first that (2.5) holds true form= 0 with c = 1, see eq. (1.13); as for (2.6),

||∇2u(0)
t ||γ . ||∇2u0||γ +

∫ t

0
ds||∇2es∆gt−s||γ

≤ K1−γ/α
2 (tinit )K

γ/α

2+α(tinit ) + t(α−γ)/2init K2+α(tinit)

≤ C(d, α, γ)K̄(3+γ)/2, γ < α (2.10)

as follows from Hölder interpolation inequalities (see Lemma 3) and Corollary
2. Time variations of∇2u(0)

t scale similarly, yielding

||∇2u(0)||γ,[0,tinit]×Rd . K̄(3+γ)/2

(see Lemma 4, eq. (4.8), and Corollary 2). Note that, similarly,

||∇u(0)||γ,[0,tinit]×Rd . K̄(2+γ)/2.

The estimate for||u(m)
t ||∞ is a direct consequence of the maximum principle.

Then,∇u(m) satisfies the gradient equation

(∂t − ∆ + u(m−1) · ∇ + ∇u(m−1))∇u(m) = ∇g, (2.11)

where∇u(m−1)(t, x) is viewed as thed×d matrix (∂ juk(t, x)) jk acting on the vector
(∂kui)k. Note that

|||∇u(m−1)(t, x)||| ≤
√

Tr(∇u(m−1)(t, x))(∇u(m−1)(t, x))∗ = |∇u(m−1)(t, x)|. (2.12)

By the maximum principle,

||∇u(m)
t ||∞ ≤ A(0, t) ||∇u0||∞ +

∫ t

0
ds A(s, t) ||∇gs||∞, (2.13)



Global existence for strong solutions of viscous Burgers equation. 119

whereA(s, t) := exp
∫ t

s
||∇u(m−1)

r ||∞dr is the exponential amplification factor of
Lemma 2. By induction hypothesis and Definition 2,A(s, t) ≤ A(0, tinit) ≤
etinitK ≤ e, hence (providedc2 ≥ e)

||∇u(m)
t ||∞ ≤ eK1 ≤ K. (2.14)

To bound∇2u(m)
t , we differentiate once more,

(∂t − ∆ + u(m−1) · ∇ + ∇u(m−1))∇2u(m) = ∇2g− ∇2u(m−1)∇u(m), (2.15)

where∇u(m−1) is viewed this time as thed2 × d2 matrix
(

∂ j′u
(m−1)
k δk′, j + ∂ ju

(m−1)
k δk′, j′

)

( j j ′),(kk′)

acting on the vector (∂2
kk′ui)kk′ ∈ Rd2

, and has matrix norm

|||∇u(m−1)(t, x)|||Md2×d2 (R) ≤ Cd|∇u(m−1)(t, x)|,

yielding an amplification factor

Ã(s, t) := exp
∫ t

s
|| |||∇u(m−1)

r (t, x)|||Md2×d2 (R) ||∞dr ≤ C′d.

By the maximum principle,

||∇2u(m)
t ||∞ ≤ C′d

(

||∇2u0||∞ +
∫ t

0
ds

(

||∇2gs||∞ + ||∇2u(m−1)
s ||∞||∇u(m)

s ||∞
)

)

≤ C′d

(

||∇2u0||∞ +
∫ t

0
ds||∇2gs||∞ + tinit K̄

3/2K

)

≤ C′d(K2(tinit ) + K̄
1
2 K) ≤ C′d(c−3 + c−1)K̄3/2 ≤ K̄3/2, (2.16)

providedc ≥ 2 max(1,C′d).

Similarly,∂tu(m) satisfies the transport equation

(∂t − ∆ + u(m−1) · ∇)∂tu
(m) = ∂tg− ∂tu

(m−1) · ∇u(m), (2.17)

hence

||∂tu
(m)
t ||∞ ≤ ||∇2u0||∞ + ||u0||∞ ||∇u0||∞ + ||g0||∞ +

∫ t

0
ds||∂sgs||∞ + tinit K̄

3/2K

≤ K2(tinit) + K̄
1
2 K ≤ (c−3 + c−1)K̄3/2 ≤ K̄3/2, (2.18)

providedc ≥ 2.

Finally, we must prove the Hölder estimate (2.6): for that,we use the integral
representation

∇2u(m)
t = ∇2u(0)

t −
∫ t

0
∇2e(t−s)∆

(

(u(m−1)
s · ∇)u(m)

s

)

ds (2.19)



120 J. Unterberger

obtained by differentiating twice the explicit solution

et∆u0 +

∫ t

0
e(t−s)∆((u(m−1)

s · ∇)u(m)
s ) ds

of (1.4). By Lemma 3, consideringα-Hölder norms on [0, tinit ] × Rd,

||(u(m−1)
s · ∇)u(m)

s ||γ ≤ ||u(m−1)
s ||∞ ||∇u(m)

s ||γ + ||∇u(m)
s ||∞ ||u(m−1)

s ||γ
. K0K1−γK̄3γ/2 + KK1−γ

0 K̄γ . K̄(3+γ)/2. (2.20)

Thus, by Lemma 4,

||∇2u(m)
t − ∇2u(m)

t′ ||∞ . ||∇2u(0)
t − ∇2u(0)

t′ ||∞ +
∫ t

t′
(t − s)

α
2−1||(u(m−1)

s · ∇)u(m)
s ||αds

. (t − t′)α/2K̄(3+α)/2 (2.21)

for t′ < t, and (choosing anyγ ∈ (α, 1))

||∇2u(m)
t ||α . ||∇2u(0)

t ||α +C′(d, α, γ)K̄(3+γ)/2
∫ tinit

0
(t− s)−1+(γ−α)/2ds. K̄(3+α)/2,

(2.22)

hence the result for||∇2u(m)||α. Similarly,

||∇u(m)
t − ∇u(m)

t′ ||α . ||∇u(0)
t − ∇u(0)

t′ ||α +
∫ t

t′
(t − s)(α−1)/2||(u(m−1)

s · ∇)u(m)
s ||αds

. (t − t′)α/2K̄(2+α)/2 + (t − t′)(α+1)/2K̄(3+α)/2

. (t − t′)α/2K̄(2+α)/2 + (t − t′)α/2t
1
2
init K̄

(3+α)/2
. (t − t′)α/2K̄(2+α)/2,

(2.23)

hence (using Hölder interpolation inequalities once more) ||∇u(m)||α . K̄(2+α)/2.
From the previous bounds immediately follows

||∂tu
(m)||α . ||∇2u(m)||α + ||(u(m−1) · ∇)u(m)||α . K̄(3+α)/2.

(ii) Apply Lemma 2 withφ = b̄ = u(m−1), b = u(m−2), φ̄ = u(m), f = f̄ = g and
c = c̄ = 0. This yields

||v(m)
t ||∞ ≤

∫ t

0
ds||v(m−1)

s ||∞||∇u(m−1)
s ||∞. (2.24)

Thus, using the induction hypothesis,

||v(m)
t ||∞ ≤

∫ t

0
dsK̄0(K̄s/(m−1))m−1K ≤ K̄0(K̄t/m)m(1− 1

m
)−(m−1)(K/K̄) ≤ K̄0(K̄t/m)m

(2.25)
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(m≥ 2) for c large enough, and

||v(1)
t ||∞ ≤

∫ t

0
ds||u(0)

s ||∞||∇u(0)
s ||∞ ≤ K0Kt ≤ K̄0(K̄t). (2.26)

Consider now as in (i) the gradient of the transport equations of indexm− 1,m,

(∂t − ∆ + u(n−1) · ∇ + ∇u(n−1))∇u(n) = ∇g, n = m− 1,m (2.27)

and apply Lemma 2 withφ = ∇u(m−1), φ̄ = ∇u(m), b = u(m−2), b̄ = u(m−1) and
c = ∇u(m−2), c̄ = ∇u(m−1). Using the induction hypothesis, one gets

||∇v(m)
t ||∞ ≤

∫ t

0
dsA(s, t)||v(m−1)

s ||∞||∇2u(m−1)
s ||∞+

∫ t

0
ds A(s, t) ||∇v(m−1)

s ||∞||∇u(m−1)
s ||∞

≤ e
∫ t

0
ds(K̄0K̄3/2 + K̄K)(K̄s/(m− 1))m−1

≤ e(1− 1
m

)−(m−1)(K̄t/m)m(K̄0K̄
1
2 + K)

≤ e(1− 1
m

)−(m−1)(c−
1
2 + c−1)K̄(K̄t/m)m

≤ K̄(K̄t/m)m, m≥ 2 (2.28)

and

||∇v(1)
t ||∞ ≤

∫ t

0
ds

(

||u(0)
s ||∞||∇2u(0)

s ||∞ + ||∇u(0)
s ||2∞

)

≤ e(K0K̄3/2 + K2)t ≤ K̄(K̄t) (2.29)
for c large enough.

3. Proof of main theorem

By Remark 1, following Theorem 2, we may now restrict considerations to times larger
than tinit . We fix a time horizonT > tinit and distinguish two regimes: ashort-time
regime, t ≤ m/K̄(T); and along-time regime, t > m/K̄(T). Clearly, the short-time
regime does not exist form = 0; as already noted before (see comments after Theo-
rem 1), this case is trivial and estimates (1.10), proven in the course of Theorem 2 in
the initial regime, extend without any modification to arbitrary time. So we assume
henceforth thatm≥ 1.

Theorem 1 follows immediately from an estimate foru(m),∇u(m), valid over the
whole regiont ∈ [tinit ,T] and another estimate forv(m),∇v(m), valid only in the short-
time regime. These are proved by induction.

Theorem 3 (estimates for u(m)
and ∇u(m)) Let m≥ 1 and t∈ [tinit ,T]. Then

||u(m)
t ||∞ ≤ K0(T), ||∇u(m)

t ||∞ ≤ K(T); ||∂tu
(m)
t ||∞, ||∇2u(m)

t ||∞ ≤ K̄(T)3/2. (3.1)

Furthermore,

||∂tu
(m)
t ||α, ||∇2u(m)

t ||α . K̄(T)(3+α)/2. (3.2)
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Proof. As already noted, the inequality||u(m)
t ||∞ ≤ K0(T) follows immediately from the

maximum principle, so we consider only the bound for the gradient and higher-order
derivatives in (3.1). We prove it by induction onm, assuming it to be true form− 1.
We abbreviateK0(T),K(T), K̄(T) to K0,K, K̄.

We apply Proposition 1 on the parabolic ballQ( j) = [t − M j , t] × B̄(x,M j/2), with
M j := 1

2 K̄(T)−1. Note that, by definition,t − M j ≥ tinit − 1
2 K̄(tinit )−1 ≥ 1

2tinit > 0. We
consider first the bound (4.17) for the gradient,

||∇u(m)||∞,Q( j−1) . R−1
b K̄−(α+1)/2||g||α,Q( j) + R−1

b K0

(

K̄−(α+ 1
2 )R−1

b ||u(m−1)||2
α,Q( j) + K̄

1
2

)

.(3.3)

The multiplicative factorR−1
b is bounded by

1+ (2K̄)−
1
2 ||u(m−1)||∞,Q( j) ≤ 1+ K̄−

1
2 K0 ≤ 2.

On the other hand, by Hölder interpolation inequalities (see Lemma 3),

||u(m−1)||α,Q( j) . KαK1−α
0 + K̄3α/4K1−α/2

0

≤ (1+ c3α/4(K2
0/K)α/4)KαK1−α

0

≤ (1+ cα/4)KαK1−α
0 ≤ (1+ cα/4)c2α−2K(1+α)/2. (3.4)

Hence

||∇u(m)||∞,Q( j−1) . K̄−α−1/2K2+α(T) + K0K̄−α−
1
2 · cα/2K2αK2−2α

0 + K̄
1
2 K0

≤ c−α−1/2K + c−(1+α)/2Kα−
1
2 K3−2α

0 + c−
1
2 K, (3.5)

which is≤ K for c large enough.

Bounds for higher-order derivatives||∂tu
(m)
t ||∞, ||∇2u(m)

t ||∞ follow from (4.19) instead,
contributing an extraM− j/2 ≈ K̄

1
2 multiplicative factor. They hold true forc large

enough. Finally, (4.20) yields

||∂tu
(m)||α,Q( j−1), ||∇2u(m)||α,Q( j−1) . ||g||α,Q( j) + K0

(

||u(m−1)||(2+α)/(1+α)
α,Q( j) + K̄1+α/2

)

. K2+α(T) + K0 · c( α4+2α−2)(2+α)/(1+α)K1+α/2 + c−1K̄(3+α)/2

. K̄(3+α)/2, (3.6)

from which

||∇2u(m)||α,[tinit ,T]×Rd .

sup
(t,x)∈[tinit ,T]×Rd

||∇2u(m)||α,Q( j−1)(t,x) + M− jα/2||∇2u(m)||∞,[tinit ,T]×Rd . K̄(3+α)/2, (3.7)

and similarly for||∂tu(m)||α,[tinit ,T]×Rd.
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We take the opportunity to derive from (4.18) a bound for||∇u(m)||α,Q( j−1) (also valid
for ||∇u(m)||α,[tinit ,T]×Rd) that will be helpful in the next theorem,

||∇u(m)||α,Q( j−1) . K̄−1/2(1+ K̄−(1+α)/2||u(m−1)||α,Q( j))||g||α +
K0K̄(1+α)/2

(

1+ K̄−(1+α)/2||u(m−1)||α,Q( j) + (K̄−(1+α)/2||u(m−1)||α,Q( j))3
)

. K̄1+α/2 (3.8)

since (from (3.4))||u(m−1)||α,Q( j) . K̄(1+α)/2.

Theorem 4 (short-time estimates for v(m)
and ∇v(m)) Let m≥ 1 and

t ∈ [tinit ,min(T,m/K̄(T))]. Then

||v(m)
t ||∞ ≤ K̄0(T)(K̄(T)t/m)m, ||∇v(m)

t ||∞ ≤ K̄(T)(K̄(T)t/m)βm. (3.9)

Proof. We abbreviate, as before,K0(T), K̄0(T), K(T), K̄(T) to K0, K̄0, K, K̄ and prove
simultaneously the bounds on||v(m)||∞ and||∇v(m)||∞, assuming them to be true form−1.

(i) (bound forv(m)
t ) As in the proof of Theorem 2 (ii), the case ofm= 1 is essentially

trivial: namely, using Lemma 2, we have fort ≤ K̄−1

||v(1)
t ||∞ ≤

∫ t

0
ds||u(0)

s ||∞ ||∇u(0)
s ||∞ ≤ K0Kt ≤ K̄0(K̄t). (3.10)

So, we now restrict the considerations tom≥ 2.

Assume first thatt ≤ (m− 1)/K̄, so thatt is in the short-time regime foru(m−1).
By Lemma 2 (see proof of Theorem 2 (ii)),

||v(m)
t ||∞ ≤

∫ t

0
ds||v(m−1)

s ||∞ ||∇u(m−1)
s ||∞

≤
∫ t

0
dsK̄0(K̄s/(m− 1))m−1K ≤ (K̄t/(m− 1))mK̄0(K/K̄)

≤ c−1K̄0(K̄t/(m− 1))m ≤ 1
2

K̄0(K̄t/m)m (3.11)

for c large enough.

For s, t ∈ [(m− 1)/K̄,m/K̄], one uses, instead,

||v(m−1)
s ||∞ ≤ ||u(m−1)

s ||∞ + ||u(m−2)
s ||∞ ≤ 2K0

and obtains

||v(m)
t ||∞ ≤

∫ (m−1)/K̄

0
ds||v(m−1)

s ||∞ ||∇u(m−1)
s ||∞ +

∫ m/K̄

(m−1)/K̄
ds||v(m−1)

s ||∞ ||∇u(m−1)
s ||∞

≤ 1
2

K̄0(K̄t/m)m+ K̄−1 · 2K0K

≤ K̄0(K̄t/m)m (3.12)
for c large enough.
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(ii) (bound for∇v(m)
t ) We start from the observation (see (2.2)) thatv(m) satisfies the

transport equation (∂t−∆+u(m−1)·∇)(v(m)) = −v(m−1) ·∇u(m−1) and apply Schauder
estimates onQ( j) = Q( j)(t0, x0) as in the proof of Theorem 3, withM j ≈ K̄(T)−1,
b = u(m−1) and f := v(m−1) · ∇u(m−1). In the course of the proof of Theorem 3, and
in (i), we obtained||u(m−1)||∞,Q( j) ≤ K0 and

||u(m−1)||α,Q( j) . K̄(1+α)/2, ||v(m)||∞,Q( j) ≤ K̄0(K̄t/m)m, ||∇u(m−1)||α,Q( j) . K̄1+α/2.

(3.13)

Furthermore, from Hölder interpolation inequalities (see Lemma 3) and induc-
tion hypothesis,

||v(m−1)||α,Q( j) . K̄1−α
0 K̄α(K̄t/(m− 1))β(m−1). (3.14)

Hence (using once again the induction hypothesis)

|| f ||α,Q( j) . ||v(m−1)||α,Q( j) ||∇u(m−1)||∞,Q( j) + ||v(m−1)||∞,Q( j) ||∇u(m−1)||α,Q( j)

. (K̄t/(m− 1))β(m−1)(K̄1−α
0 K̄αK + K̄0K̄1+α/2)

. c−1K̄(3+α)/2(K̄t/(m− 1))β(m−1). (3.15)

A priori we should now use the Schauder estimate (4.18) to bound ||∇v(m)||α,Q( j−1);
as in the proof of Theorem 3,R−1

b ≤ 2, so

||∇v(m)||∞,Q( j−1) . K̄−(1+α)/2|| f ||α + K̄1/2K̄0

(

1+ (K̄−1−α/2||u(m−1)||α)2
)

(K̄t/m)βm

. K̄−(1+α)/2|| f ||α + K̄1/2K̄0(K̄t/m)βm. (3.16)

The second term in (3.16) is bounded byc−1K̄(K̄t/m)βm, in agreement with the
desired bound (3.9), but not the first one, which is bounded by

c−1K̄(K̄t/(m− 1))β(m−1).

In order to get an integrated bound of order (K̄t/m)βm for the first term, we need
a refinement of Proposition 1. Fix (t1, x1) ∈ Q( j). We let (fork ≥ 0 large enough
so thatQ( j−k)(t1, x1) ⊂ Q( j))

ṽ(m)(t, x) := v(m)(t, x) +
∫ t1

t
f (s, x1)ds, (t, x) ∈ Q( j−k)(t1, x1) (3.17)

so thatṽ(m) satisfies the modified transport equation

(∂t′ − ∆ + v(m−1) · ∇)ṽ(m)(t, x) = f̃ (t, x) (3.18)

with

f̃ (t, x) := f (t, x) − f (t, x1). (3.19)
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Note that∇ṽ(m) = ∇v(m),∇2ṽ(m) = ∇v(m). This introduces the following modifica-
tions. First, lettingB̄( j−k)

1 := B̄(x1,M( j−k)/2),

||ṽ(m) − v(m)||∞,Q( j−k)(t1,x1) ≤
∫ t1

t1−M j
ds|| f (s)||∞,B̄( j−k)

1
≤ K̄0(K̄t/m)βm (3.20)

as follows from (3.11), (3.12). Thus,||ṽ(m)||∞,Q( j−k)(t1,x1) . K̄0(K̄t/m)βm is bounded
like ||v(m)||∞,Q( j−1). Second (see (4.26)),̃f (t, x) − f̃ (t1, x1) = f (t, x) − f (t, x1) in-
volves values off only at time t. (Eventually this spares us having to bound
inductively∂tv(m)).

We now go through the proof of Proposition 1, writing ˜v(m)(t1, x1) as the sum of a
series ˜v(m)

k1+1(t1, x1)+
∑∞

k=k1+1(ṽ(m)
k+1− ṽ(m)

k )(t1, x1), and binding only||∇ṽ||∞ = ||∇v||∞
and||∇2ṽ||∞ = ||∇2v||∞. Instead of (4.27), we get from the maximum principle

sup
Q( j−1−k)

1

|ṽ(m)
k+1−ṽ(m)

k | . M( j−k)(1+α/2)



















? t1

t1−M j−1−k
...ds|| f (s)||

α,B̄( j−1−k)
1
+ ||u(m−1)||α sup

Q( j−1−k)
1

∇ṽ(m)



















,

(3.21)

where ? t

t−M j−1−k
( · )ds := M−( j−1−k)

∫ t1

t1−M j−1−k
( · )ds

is the average over the time interval [t1 −M j−1−k, t1]. We have proved above that

|| f (s)||
α,B̄( j)

1
. c−1K̄(3+α)/2(K̄s/(m− 1))β(m−1);

thus (by explicit computation)
? t1

t1−M j−1−k
ds|| f (s)||

α,B̄( j−1−k)
1

. c−1K̄(3+α)/2
? t

t−M j−1−k
ds(K̄s/(m− 1))β(m−1)

≡ c−1K̄(3+α)/2(K̄t/(m− 1))β(m−1)ak, (3.22)

with

ak := Mk− j t−β(m−1) 1
β(m− 1)+ 1

(

tβ(m−1)+1 − (t − M j−1−k)β(m−1)+1
)

.

Let k0 := inf{k ≥ 0; M j−1−k < t/m}; sinceM j−1
& t/m by hypothesis,M j−1−k0 ≈

t/m. Fork > k0, ak ≈ 1, as follows from Taylor’s formula; bounding allak, k ≥ 0
by 1 would yield the estimate (3.16). However, fork ≤ k0, ak . Mk− j t

m, which
is a much better bound fork0 − k large. Summarizing, the only change in the
right-hand side of (4.34) is that|| f ||α may be replaced by

∑

k

M−kα/2
? t1

t1−M j−1−k
ds|| f (s)||

α,B̄( j−1−k)
1

. c−1K̄(3+α)/2(K̄t/(m−1))β(m−1)(A1+A2),
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(3.23)

where

A1 :=
∑

k≥k0

M−kα/2
. (K̄t/m)α/2 (3.24)

and similarly

A2 :=
k0−1
∑

k=0

M−kα/2Mk− j t
m
. Mk0(1−α/2)(K̄t/m) ≈ (K̄t/m)α/2. (3.25)

Altogether, with respect to the rougher bound (3.16), we have gained a small
multiplicative factor of orderA1 + A2 . (K̄t/m)β, with β := α/2. Thus

||∇v(m)||∞,Q( j−1) . c−1K̄(K̄t/(m− 1))β(m−1) · (K̄t/m)β + c−1K̄(K̄t/m)βm

. c−1K̄(K̄t/m)βm. (3.26)

4. Hölder estimates

We prove in this section the elementary Hölder estimates, together with a precise form
of the Schauder estimates, which is crucial in the proof of Theorem 1, provided in
Section 3.

Definition 3 (Hölder semi-norms) Letγ ∈ (0, 1).
1. f0 : Rd → R is γ-Hölder continuous if

|| f0||γ := sup
x,x′∈Rd

| f0(x) − f0(x′)|
|x− x′|γ < ∞.

2. f : R+ × Rd → R is γ-Hölder continuous if

|| f ||γ := sup
(t,x),(t′ ,x′)∈R+×Rd

| f (t, x) − f (t′, x′)|
|x− x′|γ + |t − t′|γ/2 < ∞.

In the denominator appearing in the definition of|| f ||γ, we find a power of the
parabolic distance, dpar((t, x), (t′, x′)) = |x − x′| +

√
|t − t′|. Note that|| ||γ is only a

semi-norm, since||1||γ = 0. We also define Hölder semi-norms for functions restricted
to Q0 ⊂ R+ × Rd or Q ⊂ Rd compact, with the obvious definitions,

|| f0||γ,Q0 := sup
x,x′∈Q0

| f0(x) − f0(x′)|
|x− x′|γ , || f ||γ,Q := sup

(t,x),(t′ ,x′)∈Q

| f (t, x) − f (t′, x′)|
|x− x′|γ + |t − t′|γ/2 . (4.1)

Remark.For f : R+ × Rd → R, we use in this article either the parabolic Hölder
semi-norm|| f ||α,Q or the isotropic Hölder semi-norm|| f (t)||α,Q0 for t ∈ R+ fixed. The
distinction is really important in the proof of Theorem 4 (ii). Clearly, || f (t)||α,Q0 ≤
|| f ||α,I×Q0 if I is some time interval containingt.
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Lemma 3 (Hölder interpolation estimates)
1. (onRd) Let Q0 ⊂ R be a convex set, and u0 : Q0 → R such that||u0||∞,Q0,
||∇u0||∞,Q0 < ∞. Then

||u0||α,Q0 ≤ ||u0||1−α∞,Q0
||∇u0||α∞,Q0

, α ∈ (0, 1). (4.2)

2. (onR+ × Rd) Let Q⊂ R+ × Rd be a convex set, and u: Rd → R such that
||u||∞,Q, ||∇u0||∞,Q, ||∂tu0||∞,Q < ∞. Then

||u||α,Q ≤ 2
(

||u||1−α∞,Q||∇u||α∞,Q + ||u||
1−α/2
∞,Q ||∂tu||α/2∞,Q

)

, α ∈ (0, 1). (4.3)

Proof. (See Lieberman, 1996) We prove (ii). LetX = (t, x) andX′ = (t′, x′) in Q, then

|u(X) − u(X′)| =
∣

∣

∣

∣

∣

∣

∫ 1

0

d
dτ

u((1− τ)X + τX′)dτ
∣

∣

∣

∣

∣

∣

≤ |t − t′| ||∂tu||∞,Q + |x− x′| ||∇u||∞,Q
≤ 2 max

(|t − t′| ||∂tu||∞,Q, |x− x′| ||∇u||∞,Q
)

.

(4.4)

On the other hand,|u(X) − u(X′)| ≤ 2||u||∞. Hence

|u(X) − u(X′)| ≤ 2 max
(

||u||1−α/2∞,Q ||∂tu||α/2∞,Q, ||u||
1−α
∞,Q||∇u||α∞,Q

)

. (4.5)

Lemma 4 Let u0 : Rd → R beα-Hölder. Then

||∇κ(et∆u0)||∞ ≤ C(d, κ, α)t(α−κ)/2 ||u0||α (κ ≥ 1); (4.6)

||∇2(et∆u0)||γ ≤ C′(d, γ, α)t−1+(α−γ)/2 ||u0||α (γ ∈ (0, 1)); (4.7)

||et∆u0 − et′∆u0||∞ ≤ C′′(d, α)(t − t′)α/2 ||u0||α (α ∈ (0, 1), t > t′ > 0). (4.8)

Proof. (4.7) follows by Lemma 3 from the bounds (4.6) withκ = 2, 3. Thus, let us first
prove (4.6). The regularizing operatoret∆ is defined by convolution with respect to the
heat kernelpt. By translation invariance, it is enough to bound the quantity

I (ε) := ∇κ−1(et∆u0)(0)− ∇κ−1(et∆u0)(ε)

in the limit ε → 0. The quantities in (4.6) are invariant through the substitution u0 →
u0 − u0(0), so we assume thatu0(0) = 0. We may also assume|ε| ≪

√
t. Let A :=

εβt(1−β)/2 with β = (1− α)/d; note that|ε| ≪ A≪
√

t. We split the integral into three
parts,I (ε) = I1(ε) + I2(ε) + I3(ε), with

I1(ε) :=
∫

|x|<A
dx∇κ−1pt(x)(u0(x) − u0(x+ ε)),

I2(ε) :=
∫

|x|>A
dx(∇κ−1pt(x) − ∇κ−1pt(x+ ε))(u0(x) − u0(0)) (4.9)
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I3(ε) =

(∫

|x|>A
dx−

∫

|x−ε|>A
dx

)

∇κ−1pt(x+ ε)(u0(x) − u0(0)). (4.10)

We use|u0(x) − u0(x+ ε)| ≤ ||u0||α |ε|α in the first integral, and get

I1(ε) . ||u0||αAdt−(κ+d−1)/2|ε|α = ||u0||αt(α−κ)/2|ε|. (4.11)

For the second integral, we use

|∇κ−1pt(x) − ∇κ−1pt(x+ ε)| .
|ε|
tκ/2

pt(x) and |u0(x) − u0(0)| ≤ ||u0||α|x|α,

yielding the same estimate. Finally, the integration volume in the third integral is
O(Ad−1|ε|), hence

I3(ε) . ||u0||αAd−1|ε|t−(κ−1)/2Aα . ||u0||αAdt−(κ+d−1)/2|ε|α · (|ε|/A)1−α

is negligible with respect to the first integral (compare with (4.11)). Takingε→ 0, this
gives the desired bound for||∇κ(et∆u0)||∞.

Finally, (4.8) may be obtained through the use of the fractional derivative

|∇|α : u0 7→
(

|∇|αu0 : x 7→
∫

dξdy|ξ|αei(x−y)ξu0(y)

)

,

namely,

|(et∆u0 − et′∆u0)(x)| =
∣

∣

∣

∣

∣

∣

∫ t

t′
ds

∫

dy∂sps(x− y)u0(y)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∫ t

t′
ds

∫

dy∆ps(x− y)u0(y)

∣

∣

∣

∣

∣

∣

.

∫ t

t′
ds

∫

dy| |∇|2−α/2ps(x− y)| | |∇|αu0(y)| . (tα/2 − (t′)α/2) ||u0||α

. (t − t′)α/2||u0||α. (4.12)

Corollary 2 Let g : [0, t] × Rd → R be a continuous function such that(gs)s∈[0,t] are
uniformlyα-Hölder, andγ < α. Then s7→ ||∇2(e(t−s)∆gs)||γ is L1

loc and, for0 < t′ < t,

∫ t

t′
ds||∇2(e(t−s)∆gs)||γ ≤ C′′(d, γ, α)(t − t′)(α−γ)/2 sup

s∈[t′ ,t]
||gs||α. (4.13)

We now turn to our Schauder estimates. The multi-scale proofof the Proposition
below is inspired by Wang (2006). We fix a constantM > 1, e.g.M = 2, for a dyadic
scale decomposition.

Definition 4 (parabolic balls) Let (t0, x0) ∈ R × Rd and j ∈ Z. Then, the scale j
parabolic ball issued from(t0, x0) is the closed subset Q( j)(t0, x0) := {(t, x) ∈ R ×
Rd; t0 − M j ≤ t ≤ t0, x ∈ B̄(x0,M j/2)}.
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The set{(t, x) | t ≤ t0, dpar((t, x), (t0, x0)) ≤ M j/2} is comparable toQ( j)(t0, x0), in
the sense that there existδk0, δk1 ≥ 0 such that

Q( j)(t0, x0) ⊂ {(t, x) | t ≤ t0, dpar((t, x), (t0, x0)) ≤ M( j+δk0)/2} ⊂ Q( j+δk0+δk1)/2(t0, x0)

(one may actually chooseδk1 = 0), which is whyQ( j)(t0, x0) is called a ’ball’; but mind
the causality conditiont ≤ t0. In the sequel we letδk = δk(M) be some large enough
integer, depending only onM, used in several occasions to make different parabolic
balls fit exactly into each other. The main property of parabolic balls in our context
is the simple scaling property for locally bounded solutions u of the heat equation
(∂t − ∆)u = 0: for all

κ = (κ1, . . . , κd), κ1, . . . , κd ≥ 0, |∇κu(t0, x0)| . (M− j/2)|κ| sup
∂parQ( j)(t0,x0)

|u|(|κ| = κ1+ . . .+κd),

where

∂parQ
( j)(t0, x0) :=

(

{t0 − M j} × B̄(x0,M
j/2)

)

∪
(

[t0 − M j , t0) × ∂B(x0,M
j/2)

)

is theparabolic boundaryof Q( j)(t0, x0). From this, we simply deduce the following:
let

Q( j)
(k)(t0, x0) := {(t, x) ∈ Q( j)(t0, x0) | dpar((t, x), ∂parQ

( j)(t0, x0)) ≥ Mk} (k ≤ j),

(4.14)

then
sup

Q( j)
(k)(t0,x0)

|∇κu| . (M−k/2)|κ| sup
Q( j)(t0,x0)

|u|,

which is a quantitative version of the well-known regularizing property of the heat
equation: ifu is bounded on somej scale parabolic ballQ( j), then∇κu is boundedaway
from the parabolic boundary ofQ( j). In particular, sinceQ( j−1)(t0, x0) ⊂ Q( j)

( j−δk)(t0, x0),
one has:

sup
Q( j−1)(t0,x0)

|∇κu| . (M− j/2)|κ| sup
Q( j)(t0,x0)

|u|.

Proposition 1 (Schauder estimates) Let v solve the linear parabolic PDE

(∂t − ∆ + a(t, x))u(t, x) = b(t, x) · ∇u(t, x) + f (t, x) (4.15)

on the parabolic ball Q( j) := Q( j)(t0, x0). Assume: u is bounded; a≥ 0;

|| f ||α := || f ||α,Q( j) := sup
(t,x),(t′,x′)∈Q( j)

| f (t, x) − f (t′, x′)|
|x− x′|α + |t − t′|α/2 < ∞ (4.16)

for someα ∈ (0, 1), and similarly||a||α, ||b||α < ∞. Then

sup
Q( j−1)

|∇u| . M j/2R−1
b















M jα/2|| f ||α +
(

M jαR−1
b ||b||2α + M jα/2||a||α + M− j

)

sup
Q( j)

|u|














, (4.17)
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||∇u||α,Q( j−1) . M− jα/2R−(1+α)/2
b

{

M j(1+α)/2|| f ||α

+

(

M j(1+α+α2)/2αR
− 1

2 (1+α)/α
b ||b||(1+α)/αα + M j(1+α)/2||a||α + M− j/2

)

sup
Q( j)

|u|














,

(4.18)

sup
Q( j−1)

|∂tu|, sup
Q( j−1)

|∇2u| . R−1
b















M jα/2|| f ||α +
(

M jαR−1
b ||b||2α + M jα/2||a||α + M− j

)

sup
Q( j)

|u|














,

(4.19)

and for everyα′ > α,

||∂tu||α,Q( j−1), ||∇2u||α,Q( j−1) . M− jα/2R−(1+α′/2)
b

{

M jα/2|| f ||α

+

(

M jα/2R
− 1

2 (2+α′)/(1+α)
b ||b||(2+α)/(1+α)α + M jα/2||a||α + M− j

)

sup
Q( j)

|u|














,

(4.20)

where Rb :=
(

1+ M j/2|b(t0, x0)|
)−1

.

Remark:Upon removing the conditiona ≥ 0, we would get the same estimates,
multiplied byeM j supQ( j) (−a).

Proof. Let
ũ(t̃, x̃) := u(M j t̃,M j/2x̃),

b̃(t̃, x̃) := M j/2b(M j t̃,M j/2x̃),

f̃ (t̃, x̃) := M j f (M j t̃,M j/2x̃),

ã(t̃, x̃) := M ja(M j t̃,M j/2x̃).

Then, the PDE (∂t − ∆ + a)u = b · ∇u + f on Q( j) reduces to an equivalent PDE,
(∂t̃ − ∆̃ + ã)ũ = b̃ · ∇̃ũ + f̃ on a parabolic ballQ̃ of size unity. Assume(leaving out
for sake of conciseness the powers ofRb = (1 + |b̃(t0, x0)|)−1) that we have proved an
inequality of the type

sup
Q̃(−1)

|∇̃κũ| .














|| f̃ ||α + (||b̃||βα + ||ã||α + 1) sup
Q̃

|ũ|














, (4.21)

respectively

||∇̃κũ||α,Q̃(−1) .















|| f̃ ||α + (||b̃||βα + ||ã||α + 1) sup
Q̃

|ũ|














. (4.22)



Global existence for strong solutions of viscous Burgers equation. 131

By rescaling, we get

sup
Q( j−1)

|∇κu| . (M− j/2)κ












M j(1+α/2)|| f ||α +
(

((M j/2)1+α||b||α)β + (M j)1+α/2||a||α + 1
)

sup
Q( j)

|u|












,

(4.23)

||∇̃κu||α,Q( j−1) .

(M− j/2)κ+α












M j(1+α/2)|| f ||α +
(

((M j/2)1+α||b||α)β + (M j)1+α/2||a||α + 1
)

sup
Q( j)

|u|












.

(4.24)

This gives the correct scaling factors in (4.17, 4.18, 4.19,4.20). Thus, we may
assume thatj = 0. In the sequel we write, for short,|| · ||α instead of|| · ||α,Q(0), and
|| · ||∞ instead of supQ(0) | · |.

The general principle underlying the proof of the Schauder estimates in Wang
(2006) is the following. Let (t1, x1) ∈ Q(0)

(−k1). One rewritesu(t1, x1) as the sum of
the seriesu(t1, x1) = uk1+1(t1, x1)+

∑+∞
k=k1+1(uk+1(t1, x1)−uk(t1, x1)), whereuk, k ≥ k1+1

is the solution onQ(−k)
1 := Q(−k)(t1, x1) of the ’frozen’ PDE

(∂t − ∆ + a(t1, x1))uk(t, x) = b(t1, x1) · ∇uk(t, x) + f (t1, x1) (4.25)

with the initial-boundary conditionuk

∣

∣

∣

∂parQ
(−k)
1
= u

∣

∣

∣

∂parQ
(−k)
1

. We split the proof into sev-

eral steps.
(i) (estimates for|uk+1−uk|) One first remarks thatuk−u, k ≥ k1+1 solves onQ(−k)

1
the heat equation

(∂t−∆+a(t1, x1)−b(t1, x1)·∇)(uk−u) = (b(t1, x1)−b)·∇u+( f (t1, x1)− f )−(a(t1, x1)−a)u

(4.26)

with zero initial-boundary condition (uk − u)
∣

∣

∣

∂parQ
(−k)
1
= 0, implying by the maxi-

mum principle
sup

Q(−k−1)
1

|uk+1 − uk| ≤ sup
Q(−k−1)

1

|uk+1 − u| + sup
Q(−k)

1

|uk − u|

. M−k(1+α/2)



















|| f ||α + ||a||α||u||∞ + ||b||α sup
Q(−k)

1

|∇u|



















. (4.27)

(ii) (estimates for higher-order derivatives ofuk1+1) Recall thatuk1+1 is a solution of
the heat equation (∂t − ∆ − b(t1, x1) · ∇)uk1+1 = f (t1, x1) with initial-boundary
conditionuk1+1

∣

∣

∣

∂parQ
−(k1+1)
1

= u
∣

∣

∣

∂parQ
−(k1+1)
1

.

Assume first|b(t1, x1)| . 1. As follows from the standard estimates, recalled
before Proposition 1.

||∇uk1+1||α,Q−(k1+2)
1

. (Mk1/2)1+α||u||∞, sup
Q
−(k1+2)
1

|∂tuk1+1|, sup
Q
−(k1+2)
1

|∇2uk1+1| . Mk1 ||u||∞,
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(4.28)

||∇2uk1+1||α,Q−(k1+2)
1

. (Mk1)1+α/2||u||∞. (4.29)

If |b(t0, x0)| ≫ 1, then one makes the Galilean transformationx 7→ x− b(t0, x0)t
to get rid of the drift, after which the boundary ofQ−(k1+1)

1 lies at distanceR =
O(M−k1/2/|b(t0, x0)|) instead ofO(M−k1/2) of (t1, x1); thus, in general,

||∇uk1+1||α,Q−(k1+2)
1

. R−(1+α)/2
b (Mk1/2)1+α||u||∞,

sup
Q
−(k1+2)
1

|∂tuk1+1|, sup
Q
−(k1+2)
1

|∇2uk1+1| . R−1
b Mk1 ||u||∞, (4.30)

||∇2uk1+1||α,Q−(k1+2)
1

. R−(1+α/2)
b (Mk1)1+α/2||u||∞. (4.31)

(iii) (estimates for higher-order derivatives ofuk+1−uk) Similarly to (ii), we note that
uk+1 − uk is a solution onQ(−k−1)

1 of the heat equation

(∂t − ∆ + a(t1, x1) − b(t1, x1) · ∇)(uk+1 − uk) = 0.

Thus

sup
Q(−k−2)

1

|∂t(uk+1 − uk)|, sup
Q(−k−2)

1

|∇2(uk+1 − uk)| . MkR−1
b sup

Q(−k−1)
1

|uk+1 − uk|, (4.32)

||∇2(uk+1 − uk)||α′,Q(−k−2)
1
. (Mk)1+α′/2R−(1+α′/2)

b sup
Q(−k−1)

1

|uk+1 − uk| (4.33)

is bounded using (i) in terms ofRb, ||b||α, || f ||α, and supQ(−k)
1
|∇u|.

(iv) (Schauder estimates for higher-order derivatives ofu) Summing up the estimates
in (i), (ii), (iii), and noting that· · · ⊂ Q(−k1−2)

1 ⊂ Q(−k1−1)
1 ⊂ Q(0)

(−k1−δk) for δk =
δk(M) large enough, one obtains

M−k1 sup
Q(0)

(−k1)

|∂tu|,M−k1 sup
Q(0)

(−k1)

|∇2u| .

R−1
b



















(M−k1)1+α/2





















|| f ||α + ||a||α||u||∞ + ||b||α sup
Q(0)

(−k1−δk
)

|∇u|





















+ ||u||∞



















.

(4.34)
By interpolation (see immediately thereafter), supQ(0)

(−k1−δk)
|∇u| is bounded in terms

of ||u||∞ and supQ(0)
(−k1−δk)

|∇2u|. Thus, in principle, (4.34) gives a bound for∇2u.

However, sinceQ(0)
(−k1−δk) ) Q(0)

(−k1), onecannotfix k1. Instead we shall bound

supk1
M−k1 supQ(0)

(−k1)
|∇2u|, and similarly for the different gradient/Hölder norms

considered in the Proposition. This explainswhy ultimately we must consider
the values of∇u, ∇2u on the whole parabolic ballQ(0), not only on the subset
Q(−1), where our results are stated.
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Now

sup
Q(0)

(−k1−δk)

|∇u| .





















sup
Q(0)

(−k1−δk)

|∇2u|





















1/2

(||u||∞)1/2
. ε2 sup

Q(0)
(−k1−δk)

|∇2u|+ ε−2||u||∞ (4.35)

for everyε > 0. Hence (using (4.34)), choosingε2 ≈ Rb/||b||α, one gets

sup
k1≥0

M−k1 sup
Q(0)

(−k1)

|∇2u| . R−1
b

{

(M−k1)1+α/2
(

|| f ||α + (||a||α + R−1
b ||b||2α)||u||∞

)

+ ||u||∞
}

,

(4.36)

implying, in particular, the bound (4.19) for∇2u, from which (4.35, 4.34) yields
the bound (4.19) for∂tu.
Using the estimates (4.19) and (4.35) withε = 1 yields also the gradient bound
(4.17).

(v) (Schauder estimates for Hölder norms)
Let us now bound

||∇2u||
α,Q(0)

−(k1−1)
≈ sup

(t1,x1),(t2,x2)∈Q(0)
−(k1−1)

|∇2u(t2, x1) − ∇2u(t2, x2)|
dpar((t1, x1), (t2, x2))α

or, equivalently,||∂tu||α,Q(0)
(−k1−1)

. Assume, e.g.,t1 ≥ t2, and (t2, x2) ∈ Q(−k2)(t1, x1),

k2 ≥ k1 + 1, with dpar((t1, x1), (t2, x2)) ≈ M−k2/2. The hypothesisk2 ≥ k1 + 1
excludes the case wheredpar((t1, x1), (t2, x2)) is comparable toM−k1/2, a case
which is not needed, since it is already covered by the estimates proved in (iv).
Then,

|∇2u(t, x) − ∇2u(t′, x′)| ≤ I1 + I2 + I3 + I4,

with (using (4.33) forI1, I2 and (4.32) forI3, I4)

I1 = |∇2uk1(t1, x1) − ∇2uk1(t2, x2)| . (Mk1)1+α/2R−(1+α/2)
b ||u||∞dpar(t1, x1; t2, x2)α;

(4.37)

I2 =

k2−1
∑

k=k1

|∇2(uk+1 − uk)(t1, x1) − ∇2(uk+1 − uk)(t2, x2)|

. R−(1+α′/2)
b dpar(t1, x1; t2, x2)α

′

















k2−1
∑

k=k1

(Mk/2)α
′−α



































|| f ||α + ||a||α||u||∞ + ||b||α sup
Q(−k)

1

|∇u|



















. dpar(t1, x1; t2, x2)αR−(1+α′/2)
b



















|| f ||α + ||a||α||u||∞ + ||b||α sup
Q

(−k1)
1

|∇u|



















; (4.38)
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and

I3 :=
∑

k≥k2

|∇2(uk+1 − uk)(t1, x1)|, I4 :=
∑

k≥k0

|∇2(uk+1 − uk)(t2, x2)| (4.39)

are

. dpar(t1, x1; t2, x2)αR−1
b



















|| f ||α + ||a||α||u||∞ + ||b||α sup
Q

(−k2)
1

|∇u|



















. (4.40)

Hence
(M−k1)1+α/2||∂tu||α,Q(0)

−(k1−1)
, (M−k1)1+α/2||∇2u||α,Q(0)

−(k1−1)
. R−(1+α′/2)

b ·

·



















(M−k1)1+α/2





















|| f ||α + ||b||α sup
Q(0)

(−k1−δk)

|∇u| + ||a||α||u||∞





















+ ||u||∞





















,(4.41)

compare with (4.34).

By standard Hölder interpolation inequalities (see Lieberman, 1996),

sup
Q(0)

(−k1−δk)

|∇u| . ||∇2u||1/(2+α)
α,Q(0)

(−k1−δk)

( sup
Q(0)

(−k1−δk)

|u|)(1+α)/(2+α)
.

ε2+α||∇2u||α,Q(0)
(−k1−δk)

+ ε−(2+α)/(1+α) ||u||∞ (4.42)

for everyε > 0. Choosingε2+α ≈ R1+α′/2
b /||b||α yields as in (iv) a bound for

supk1≥0(M−k1)1+α/2||∇2u||
α,Q(0)

−(k1−1)
, from which one deduces, in particular, (4.20).

In order to obtain the bound (4.18) for||∇u||α,Q(−1), we proceed initially in the
same way, with the only difference being that one may takeα′ = α in (4.38),
since one gets a series

∑k2−1
k=k1

M−k/2 of orderO(1). Thus, (4.41) becomes

(M−k1/2)1+α||∇u||
α,Q(0)

−(k1−1)
.

R−(1+α)/2
b



















(M−k1/2)1+α





















|| f ||α + ||b||α sup
Q(0)

(−k1−δk)

|∇u| + ||a||α||u||∞





















+ ||u||∞



















.

(4.43)

One now uses Hölder interpolation inequalities to bound∇u in terms of||u||∞ and
∇2u. Instead of (4.44), one has here

sup
Q(0)

(−k1−δk)

|∇u| . ||∇u||1/(1+α)
α,Q(0)

(−k1−δk)

( sup
Q(0)

(−k1−δk)

|u|)α/(1+α) . ε1+α||∇u||α,Q(0)
(−k1−δk)

+ε−(1+α)/α ||u||∞

(4.44)

for everyε > 0. Choosingε1+α ≈ R(1+α)/2
b /||b||α yields as in (iv) a bound for

supk1≥0(M−k1)(1+α)/2||∇u||
α,Q(0)

−(k1−1)
, from which one deduces, in particular, (4.18).
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