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Abstract: We prove that the viscous Burgers equatidn{A)u(t, X) +
(u-V)u(t,x) = g(t,x), (t,x) € R, x R4 (d > 1) has a globally defined
smooth solution in all dimensions provided the initial citineh and the
forcing termg are smooth and bounded together with their derivatives.
Such solutions may have infinite energy. The proof does typbreenergy
estimates, but on a combination of the maximum principlecarahtitative
Schauder estimates. We obtain precise bounds on the sup afdim
solution and its derivatives, making it plain that there ésaxponential
increase in time. In particular, these bounds are timegeddent ifg
is zero. To get a classical solution, itfBoes to assume that the initial
condition and the forcing term have bounded derivativeougrder two.
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1. Introduction and scheme of proof
1.1. Introduction

The (1+ d)-dimensional viscous Burgers equation is the following+iaear PDE,

(i —vA+u-V)u=g, ul,_, = Uo (1.1)

for a velocityu = u(t,x) € R4 (d > 1), (t,X) € R, x RY, wherev > 0 is a viscos-
ity coeficient, A the standard Laplacian d&®, u- Vu = Zid:l Uidy U the convection
term, andy a continuous forcing term. Among other things, this fluid &ipn, which
describes the hydrodynamical limit of interacting pagisystems (Spohn, 2016; Kip-
nis and Landim, 1999), is a simplified version without pressif the incompressible
Navier-Stokes equation, and also (assungnp be random, which turns (1.1) into
a so-called stochastic Burgers equation) an interestingetrfor the study of triic
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jams, and an interesting toy-model for Navier-Stokes’ ¢ignaand, in particular, for
the study of turbulence (so-called "Burgulence”), see,, égc and Khanin (2007),
E, Khanin, Mazel and Sinai (2000), Woyczynski (1998). Ndt&ttgradient solutions
of the stochastic Burgers equation are gradients of solsitid the celebrated Kardar-
Parisi-Zhang (KPZ) equation, on which (particularly in espace dimension, where
its highly non-trivial large-scale Tracy-Widom limit apgs to arise in many non-
equilibrium processes in statistical physics, see, e.gndiland Spohn, 216; Spohn,
1991, for recent perspectives) there is now an immense aoklgevolving literature.
The present study is purely mathematical: we show undersbkenaptions onig

andg, provided further on in this section, that the Cauchy proble

@i —vA+u-V)u=g.u_, = (1.2)

has a unique, globally defined, classical solutio@1 (i.e. continuously dferentiable

in the time coordinate and twice continuouslyfeientiable in the space coordinates),
and provide explicit bounds for the supremumuofind its derivatives up to second
order.

Before we go further, let us mention for the sake of the redu#w, g;, - - - are the
valuesattimet of u, g, - - - andnottheir time-derivatives (in discrepancy with a notation
widely used in particular by specialists of integrable syss, but in accordance with
probabilists’ notations!).

Assumptions:

(i) (initial condition) uy € C? and VU is a-Holder for everya € (0, 1); for x =
0,1,2, ||[V¥Uglle := SUPBpa [V¥U(X)| < oo;

(i) (forcing term) on every subsd0, T] x RY with T > O finite, g is bounded
and a-Holder continuous for every € (0, 1); furthermore, g is ¢? and t —
V4Ol 1= SURga IV¥G(X)], t > [10i0tllee = SURga 10:G:(X)| are locally inte-
grable in time.

For convenience, we redefifie= vt, i = v'u, § = v"2g. The rescaled equation,
(0r—A—1T- V)i = g, has viscosity 1. We skip the tilde in the sequel. Our bourals b
up in the vanishing viscosity limit — 0 (see Remarks after Theorem 1 for a precise
statement).

Our approach is the following. We solve inductively the dnéransport equations,
utD = 0; (1.3)
@ -A+u™D .M =g u™|_=u  (m>0). (1.4)

If the sequenceu(™),, converges in appropriate norms, then the limit is a fixed {poin
of (1.4), hence solves the Burgers equation.|Ligt denote either the isotropic Holder
semi-norm orRY,
[Uo(X) — Uo(Y)]
ol = sup e 200
x,yeRd [X - Y|

>
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or the parabolic Holder semi-norm @& x RY,

l9(s, X) — g(t, y)|
llglle == su
J (&x),(t,y)e%x]&d X —yl* + [t — go/2

(see Section 4 for more on Holder norms).

DermnrTion 1 Let, for c> 0O,

t
Ko(t) := llUolle + fo dsigsl (1.5)

t
Ka(t) := VU0l + fo A4Vl (1.6)

t
Ka(t) := IV2Uolleo + lIUolleolI VUolleo + ligolles + fo ds(IIV?0slco + 19sGellec)  (1.7)

Koro() = [IV2Uollo + I9sllafogxre, @ € (0,1) (1.8)
and

K(t) := & (Ko()? + Ka(t) + Ka(t)?'2 + Koo ()7 E). (1.9)

Note thatKy(t), Ki(t), Ka(t), Koo (t), K(t) < oo forall t > 0 anda € (0, 1) under the
above Assumptions.

Our main result is the following.

Tueorem 1 For everys € (O, %), there exists an absolute constantcc(d,8) > 1,
depending only on the dimension and on the expghenich that the following holds:

(i) (uniform estimates)

U™ < Ko@®), VU™l < K@);  100U™ o, 11720 < (CK(1))%2
(1.10)

(i) (short-time estimates) definéV := u™ —u™Yform> 1. fO<t< T and
t < m/cK(T), then

V™l < cKo(TY(EKMEM™ VW™l < cK(T)(CK(T)t/mP™ (1.11)
Let us comment on these estimates.

Remarks:

1. The diferent powers in the expressionkoft) come from the dimension counting
dictated by the Burgers equation: thé&dsion ternAu, the convection term-Vu
and the forcingy are homogeneous if scales likeL™1, wherelL is a reference
space scale, angllike (LT)™%, whereT is a reference time scale. Assuming
parabolic scalingKk~1(t) scales like time and plays the role of a reference time
scaleT (t) at timet, leading to a time-dependent space st¢ate L(t) ~ K*%(t).
The scaling of the othef-parameters i&o ~ T2; K1, K ~ T~1 K, ~ T-32;
Kore ~ T—(3+a)/2_
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. The first uniform estimate

U™l < Ko(t) (1.12)

follows from a straightforward application of the maximunmgiple to the trans-
port equation (1.4).

. (uniform estimates for the gradient). The functid® satisfies the linear heat

equation §;—A)u© = g, whose explicit solution is©@(t) = e‘Auo+fot dsé-94gq,
Thus

t
VUl < VUl + f d91Vg4lle = Ka(t). (1.13)
0

Clearly, Ky(t) < K(t). Estimates for further iteratag?, u®, ... involve K(t)
instead ofKy(t).

. Fix atime horizom > 0 and consider the series

+00 +00
. 1
SO = ) W™ = D (U™ - u™Y)
m=0 m=0

fort < T (note that, by definitiony® := u©@ — uD = u©®). The short-time
estimates (1.11) imply th&(t) is absolutely convergent. More precisely, letting
mp = [cK(T)t] andy := 1,

n +00
e = | 2™ —u™ D < ™o+ Y0 Ml
m=0 o0 m=my+1
+00
< KO(T){1+C Z (cK(T)t/m)Vm}(1.14)
m=mp+1

foralln > my. Letm > mg andx = 1 — cK(T)t/m € [0, 1]: using 1- x < 7%,
one gets¢K(T)t/m)"™ = (1 - x)"™ < @KMtgrM and

+o0 too
Z (cK(T)t/m)?™ < KM Z eM< /(e - 1). (1.15)
m=my+1 m=my+1

HenceJluﬁ“)Iloo < Ko(T). In a similar way, lettingy := g this time, one shows that

n

Z(Vuﬁm) - Vuﬁ””b

m=0

VUl = < K(T). (1.16)

e8]

These estimates are best whea T; one then retrieves the uniform estimates
(1.10) up to some constant.

. (short-time estimates) Bounds (1.11) are of o@gCt)*™/(m!)?), y = 1 org,

and are obtained by successive integrations. For linear equations, or equstio
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with bounded, uniformly Lipschitz cdgcients, successive integrations typically
yield O((Ct)™/m!). The Burgers equation, on the other hand, is strongly non-
linear. While using precise Schauder estimates to obtagthdient bound in
(1.11), one stumbles into the conditiBn< % at the very end of section 3 which
apparently cannot be improved.

6. (blow-up of the above estimates in the vanishing visgdsitit) By undoing the
initial rescaling, we obtaim-dependent estimates,

lIudleo < Ko(t), VUl < v K (), 118t < v IK(®)2, IVl < v 2K (1)%2
(1.17)

with Ko(t), K1(t) as in (1.5), (1.6),
t
Ka(t) := vIIV%Uolleo + llUolleolIVUolleo + lIGolleo + fo ds(vIIV2g4lle + 10:Tsllco),

Kot (t) := VIIV2Uollo + SUP |1Qslla
a€[0,t]
and
K(t) 1= Ko(t)? + vKa(t) + (Ka()?/® + (rH 7 Kas e ()% G

Thus, the derivative bound®*u||., «k = 1,2 and||6:ull.. blow up at diferent
rates whernv — 0.

From the above theorem, one deduces easily that the sobftibe Burgers equa-
tion is smooth orR, x RY, provided (i)up is smooth and its derivatives are bounded;
(ii) gis smooth and its derivatives are bounded arT[[ox R for all T:

CororLary 1 Assume gland g are smooth, and ||[V¥ug|lo < 0 (k = 0,1,2,...),

16 V¥atllo < Cu, &, T), u,« = 0,1,2,... for every t< T. Then the Burgers equation
(1.1) has a unique smooth solution u such th#V“u|l < C'(u, «, T) for everyu, x
andt< T. In particular, C(u, «, t) = C’(u, ) is uniform in time if g= 0.

We do not prove this corollary, since it results from staddattension to higher-
order derivatives of the initial estimates of Section 2, ancequally standard iterated
use of Schauder estimates to derivatives of Burgers equatio

Our results extend without any modification to nonlineastof the typd=(u) - Vu
with smooth matrix-valued cdkcient F if F is sublinear, and even (with fiierent
scalings and exponents for theconstants) to the case whErhas polynomial growth
at infinity.

Let us compare these with the results available in the titeea The one-dimensio-
nal cased = 1 or the irrotationab-dimensional case witg = Vf of gradient form,
is exactly solvable through the Cole-Hopf transformatioa V log¢, which reduces
it to a scalar, linear PDB¢ = vA¢ + f¢; note also that log is a solution of the
KPZ (Kardar-Parisi-Zhang) equation. In that case the egunas immediately shown
to be well-defined for every> 0 under our hypotheses, and estimates similar to ours
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are easily obtained; specifically, th = 1, an invariant measure is known to exist
if gis, e.g., a space-time white noise, see Da Prato, Debussch@&esnam (1994).
For periodic solutions on the torus in one dimension, thevaliesults extend to the
vanishing viscosity limit, see E, Khanin, Mazel and Sin&@Q). The reader may refer,
e.g., to Dermoune (1997) for a more extended bibliography.

So, our result is mostly interesting far > 2; as mentioned above, our scheme
of proof extends to more general non-linearities of the férfa) - Vu, for which the
equation is not exactly solvable in general. In this settihg classical result of 1957 is
due to Kiselev and Ladyzhenskaya (1957). The authors censadutions in Sobolev
spaces and use repeatedly the energy estimates. They warkoumnded domait
with Dirichlet boundary conditions, but their results exdewith minor modifications
to the cas® = RY. If ug € HSwith s> d/2, then||ug|l.. < oo by Sobolev’s imbedding
theorem. Then, the maximum principle gies|l.. < ||ugll~ as long as the solution
is classical; this key estimate allows one to bootstrap @tdbgunds for higher-order
Sobolev spaces, which increase exponentially in time, |leiti: = O(e“!%l), as this
follows from the proof of Lemma 3 in Kiselev and Ladyzhensk#&¥957). Compared
to these estimates, ours present two essential improvem@nie do not assume any
decrease of the data at spatial infinity, so that they do nes®arily belong to Sobolev
spaces; (ii) more importantly, perhaps, our bounds do moease exponentially in
time; in the case the right-hand sidevanishes identically, they are even uniform in
time, Ko(t), K(t) < C, whereC is a constant depending only on the initial condition.

The more recent theoretical PDE literature around Burgegigiation is typically
concerned with far-reaching generalization of resulthssglobal existence in Sobo-
lev or L* spaces, long-time decay either to zero or to a scaling solditir Burgers-
type equations (depending on whether the linear term or ¢imelinear term is more
relevant), etc., for models with viscosity induced by a fi@tal Laplacian, see e.g.
Alibaud, Imbert and Karch (2010), Biler, Funaki and Woyczkin(1998), Chan and
Czubak (2010), Constantin, Cordoba and Wu (2001), Dror@allouét and Vovelle
(2002), Droniou and Imbert (2006). There, the general @geis to understand, using
different techniqued.f-inequalities a la Schonbek, 1980, De Giorgi theory, maxim
principle, viscosity theory, etc.) the smoothin@ieet induced by the viscosity, under-
stood as a possibly non-local regularization of a hypecddjuation. Despite the fact
that the maximum principle extends to vector-valued pdieleguations, the more so-
phisticated tools used there are applied only to scalartemsasometimes only in one
spatial dimension. It cannot be excluded that our scherd, (doupled with more re-
fined analytical tools, may help provide alternative (pblyssomewhat simpler) proofs
for existence of classical solutions for such equations.

Let us finally comment on our choice of approximation scheiné)(and provide
some perspectives. Simple as it is, its power is best restdnlesolving the transport
equations by the method of characteristics. For zero or stimero viscosity, these
characteristics are essentially deterministic, and therse falls apart. The best way
to understand this is to consider a compactly supporteidlicibnditionug. Forv = 0,
u®@ = uo, and it is easy to prove by considering the characterigtiasthe support of
u® is included in the support af. By induction, the support of the sequena@)i-o
does not increase, thus the solution cannot converge, iergemo the solution of the
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inviscid Burgers equation. Reasoning the other way rounappears that the noisy
behaviour of characteristics is a central feature of thieste. In fact, much more
can be said about the behaviour of the viscous Burgers @mquayistudying these, see
our articles in preparation, Unterberger (2017a,b). Indlosely related framework
of the Kardar-Parisi-Zhang (KPZ) equation, the Hamiltacabi-Bellman formalism
yields a representation of the solution as the infimum of simetional depending on
random characteristics, see Unterberger (2017c), whichastually the starting point
for this sequence of articles on Burgers’ equation. Drawimghese successes, we plan
to investigate numerically the open questions on the lérge-behaviour of Burgers’
equation using (1.4).

1.2. Scheme of proof

Recall that we solve inductively the following linear trgost equations, see (1.4),
utb = 0; (1.18)
@ -A+u™D .M =g U™ _=u  (m=0). (1.19)

Under the first set of assumptions, standard results onrlgmaations show that™

m > 0 is C'?. Assumewe manage to prove locally the uniform convergence of
u™ vu™ v2y whenm — oo. Then, there exista € C%? such that locally uni-
formly u™ — u, Vu™ — vu, V2u™ — V2u andgu™ — du. Hence,du™ =
AU™ — y(mD) . yy™ 4+ g converges locally uniformly tdu — u- Vu + g, anddu =
Mmoo UM = Au—u- Vu+ g. In other words, the limiti is aC? solution of the
Burgers equation.

The key point in our scheme is to prove the locally uniformaagence o™
andvu™, and to show uniform bounds in Holder norms for second odéevatives
vau™, guM: a simple argument (see below) yields then the convergeinsecond
order derivatives, allowing for application of the abovereéntary argument. The basic
idea is to rewriteu as ¥ V™, with V™ := uM — u™-1D and to show that the series
is convergent, uniformly in space and locally uniformlyiimeé.

In the sequel we fix a constant- 1 such that Theorem 1 holds and let
Ko(t) = cKo(t), Ka(t) i= cKy(t), K(t) := cK(t) (1.20)

to simplify notations.

The proof relies on two main ingredientspriori estimatecoming from the max-
imum principle; andSchauder estimatesSchauder estimates ardftiult to find in a
precise form, suitable for the kind of applications we haveiew, so the reader will
find in the appendix a precise version of these estimate®Rsgmosition 1, following
a multi-scale proof introduced by X.-J. Wang. These implpanticular the following

Lemma 1l LetO<t<T. Then

10U™ ]l 1071895 IV2U™ | o 1yxme < K(T)EF/2, (1.21)
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Lemma 1 is proved in Section 3, alongside with Theorem 1.

We now use a classical result about Holder spacesC1€D), with Q c R x R
compact, be the Banach spaceasHolder functions ornQ equipped with the norm
llullle := llulls,0 + llUlle,o- Then, the injectiorC? (Q) c C¥(Q) is compact for every
« < a. In particular, Lemma 1 implies the existence of a subsecgi¢™),,, such
that V2u™ —_, .. vin C¥-norm. On the other hand, as discussed in Remark 4
above,u™ — uandVu™ — Vu in the sup norm for soma € C%'. Hence,u is
twice continuously dferentiable in the space variables, &l = v. Now, every
subsequencevfu™),,, converges to the same limif2u. Hence,V2u™ — V2u in
C¥. In a similar way, one proves thatis continuously dferentiable in the time
variable, andu = limm_. 8:u™ in C¥. In particular,u € C*?, and the arguments
given at the very beginning of the present subsection shatwtis a classical solution
of the Burgers equation. Note that we may reach the same uzianl even if we
do not know that the serig7u™™Y — vuM||,, 5 converges. Actually, the bound on
VU™ — vu™||, o is the trickiest one. We felt, however, that it was one of thestn
unexpected estimates we had obtained, and thus worth inglud

Notations.For f,g : X —» R, two positive functions on a se, we write f(u) <
g(u) if there exists a constai@ = C(d) depending only on the dimension such that
f(u) < Cg(u). (If C depends on other parameters, notablg,ahen we write explicitly
the dependence on them, so that we make it clear that we deehang/anted extra
multiplicative factor€O(c™) in the formulas which would invalidate the proofs).

2. Initial estimates

Initial estimates are flierent in spirit from those of the next section, since theyncan
rely on Schauder estimates. Instead, we use a Gronwalllypma based on the
maximum principle.

Lemma 2 (GrRonwaLL LEMMA) Leto : R, x RY — RY, respectively
¢ R, xRY > RY

be the solution of the transport equati@h — A + b- V — c)¢ = f, respectivelyd; —
A+b-V-c)p = f, with the same initial conditiong;SL:O = ‘;L:o; the cogficients
¢ = c(t,x),Cc = c(t,x) € Mgxq(R) are matrix-valued, and tb, c, c are assumed to be
bounded and continuous, together with their first derivediviLet v.= ¢ — ¢. Then

t _ t
IVl < f ds A 1) [bs — bille Vel + f ds A 1) [16 — Cell 16l
0 0
t —
+ [ dsAsOIf- till. 2.1)
0

where]|| - ||| iS the supremum ové® of the operator norm in Mq(R), and As,t) =
t
exp [ llicellldr.
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Prook. By subtracting the PDEs, satisfied #yndg, one gets
(Oi—-A+b-V-Cv=—(b-b)- V¢ +(f - f)+(C- ). (2.2)
A simple application of fixed-point theorem in the Banachcgpa
WE([0,T]) := {ue L¥([0, T] x RY) | [Vul € L*([0, T] x RY)}

as in Amour and Ben Artzi (1998, Prop. 2.1), fosmall enough, implies local-in-time
existence fow; since the equation is linear, bounds fioi || ~, ||[Vur||L~ are linear in
terms off|ugl|_~, ||[VUg||L~, whence the argument may be repeated over intervals of time
[T, 2T], [2T, 3T], ... and yields global existence.

LettingV; := A0, t)"v; in (2.2), we find
@ —A+b-V-8¥=A0.t)" (-(b-b)- Vo + (f - f) + (€~ O)¢) (2.3)

where nowc(t, X) := c(t, X) — |/Icllle < 0. Hence, as an application of the parabolic
comparison principle in unbounded space, e.g. in the foimdan Kaplan (1963), in
the much wider context of semi-linear parabolic equations,

t _ t
Wl < f ds A0, 9 lbs - byl Vsl + f ds A0, 9716 - clle 4o
0 0

t f—
+ [(dsH0.9 - il 2.4)
0
implying (2.1). ]
DerinTION 2 Let §it = inf {t > 0; tK_(t) = 1}.

By hypothesistinit > 0. If up = 0 andg = 0, thentj,; = +oo and the solution of
Burgers’ equation is simply 0. The casewfCst, Vg = 0 reduces to the previous
one by the generalized Galilean transformatior> X + fota(s)ds U u-awith

a(t) = up + fot gsds We henceforth exclude this trivial case, so thate (0, +0).

Tueorem 2 (NiTIAL ESTIMATES) Let t < tiyi;. Then the following estimates hold:

@

U™l < Koltin):  1IVU™lleo < Ktint): 100U leon IV2UM™ oo < K (tinit)¥2.
(2.5)
Furthermore,
10U™ Lo, V2™, < CK (tinie) /2 (2.6)
with C = C(d, ).

(i) letm > 1, then

IVl < Ko(tinit)(K(tini)t/mM)™, IVl < K(tinie) (K (tini)t/m)™. (2.7)
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Remarks.

1. LetT < tn, then (2.5), (2.6) and (2.7) remain true fog T if one replaces
Ko(tinit), Ko(tinit), K(tinit), K(tinit) by Ko(T), Ko(T), K(T), K(T). Hence Theorem
1is proved fott < tini; (actually withg = 1).

2. The value ofi,; depends on the choice of We provide in the course of the
proof a rather explicit minimal value af, for which (2.5), (2.6), (2.7) hold.
Further estimates in the next section may require a largaeaic.

3. From Holder interpolation estimates (see Lemma 3), ¢ lzas a bound for
lower-order Holder norms,

U™l < Koltinie) ™K (tini)* + Ko~ tinit) K34 (tinit), (2.8)
and, for fixeds < tjjt,
VUl < K (Einie) K (tinie) /2. (2.9)

Proor. Let us abbreviat&o(tinit), Ko(tinit), Ki(tinit)s Ki(tinit), K(tinit), K(tini) to
Ko, Ko, K1, K1, K, K.
(i) We first prove estimates (i) by induction, assuming therhe proved fom— 1.
Note first that (2.5) holds true fan = 0 with c = 1, see eq. (1.13); as for (2.6),

t
V21, < 1IV2ully + f dslv?e® gt slly
0

< K (i) K2 (i) + 107 Kara (tinie)
< C(d,a,y)KEM2 <@ (2.10)

as follows from Holder interpolation inequalities (seeriraa 3) and Corollary
2. Time variations o#2u® scale similarly, yielding

VU g0, s < KE2
(see Lemma 4, eq. (4.8), and Corollary 2). Note that, sityilar
VUl f0 s 5 KEV2.

The estimate fontluﬁm)lloo is a direct consequence of the maximum principle.
Then,Vu(™ satisfies the gradient equation

(0 — A+ U™V . v + vumDyyy™ = vg, (2.11)

wherevu™(t, x) is viewed as thelxd matrix @;uk(t, X)) k acting on the vector
(0kUi)k. Note that

VU™t X))l < VTr(Vum-D(t, X)) (Vum-(t, x))* = [vu™(t, x)|. (2.12)

By the maximum principle,

t
VU™l < A0, ) IV Uolleo + f ds A 1) [[VGslleo, (2.13)
0
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whereA(s t) = expfst [Vu™Y||.dr is the exponential amplification factor of
Lemma 2. By induction hypothesis and Definition &(s,t) < A(0, tinit) <
gnk < e hence (provided® > €)

VU™l < eKy < K. (2.14)
To boundv2u(™, we diferentiate once more,

0, — A +u™D . v 4 vumDyg2 ™ = v2g _ v2ym-Dyym, (2.15)
wherevVu™1 s viewed this time as the? x d? matrix

Ml ym-1s

(9 U™+ BT i) 1 e

acting on the vectora(fk Ukk € R% and has matrix norm
VU™ g 61 < CalVU™ (0. )L

yielding an amplification factor

t
A(st) = exp f VU™ D (E g, ) lleodr < C.
S

By the maximum principle,

A

t
IVl < C&(I|V2U0|Im+ f ds(uvzgsnmuvzugm1>||m||Vu‘sm>||m))
0

IA

t p—
Cy (nvzuonoo + f dgIV2g4lle +tinitK3/2K)
0

Cy(Ka(tint) + K2K) < C4(c3 + cHK32 < K32, (2.16)

IA

providedc > 2 max(1 Cy).

Similarly, 9;u™ satisfies the transport equation

(0 — A + U™V . Vo™ = 5,g - du™D . vu™, (2.17)
hence .

18:U™]l < IV2Uglleo + 1Uollee IV Uolleo + 1Golleo + f d 910594/l + tinit K¥2K
0

< Ko(tini) + KZK < (¢ + c K32 < K372, (2.18)

providedc > 2.

Finally, we must prove the Holder estimate (2.6): for tives, use the integral
representation

t
v = vz - f V29 (U™ - v)ul?) ds (2.19)
0
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obtained by dferentiating twice the explicit solution
t
e®up + f =92 (M. v)uMy ds
0

of (1.4). By Lemma 3, considering-Holder norms on [Qtinii] x RY,

A

I WUl < U Dl 1IVUEH + 1IVUPl 121,
S KoKY7K¥/2 4 KKI7KY 5 KE/2, (2.20)

Thus, by Lemma 4,

A

t
VU™ - v, < IV - v, + f (t- 9 ™Y . vul|,ds
)

< (t-t)rPKE2 (2.21)

~

fort’ <t, and (choosing any € («, 1))

_ Tinit _
||V2U§m)||g < ||V2U§O)||g +C'(d, a, y)K(3+y)/2f (t— S)—1+(y—oz)/2dSs K(3+a)/2’
0
(2.22)

hence the result fdfv2u™)||,. Similarly,

t
VU™ = VUl < 194~ VUl + f (t= 9 2™ - V)ullads
.
< (t _ t/)a/ZK_(Zﬂl)/Z + (t _ t/)(a/+1)/2K_(3+a/)/2

< (t _ t/)a/ZK_(ZJra)/Z + (t _ t/)w/Zti%m K_(3+(y)/2 < (t _ t/)a//ZK_(ZJra)/Z,
(2.23)

hence (using Holder interpolation inequalities once mpvai™||, < K@+)/2,
From the previous bounds immediately follows

8™, < IV2U™]l, + (U™ . 7)u™)), s KE)/2,

(i) Apply Lemma 2 withg = b = u™D b = u™2, ¢ = u™, f = f = gand

c=c=0. Thisyields
t
Il < f AV Il VU Do (2.24)
0

Thus, using the induction hypothesis,

t
IVl < f dsKo(Ks/(M-1))"*K < Ko(Kt/m)™(1- n%)‘(m‘“(K/K) < Ko(Kt/m)™
0

(2.25)
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(m > 2) for c large enough, and

t —
IOl < f ASUONLIVUO < KoKt < Ko(KD). (2.26)
0

Consider now as in (i) the gradient of the transport equatafrindexm — 1, m,
G -A+u V. vV Dy =vg,  n=m-1,m (2.27)

and apply Lemma 2 witlp = VU™, ¢ = vu™, b = u™2?, p = u™D and
c=Vu™?2, ¢=vu™b, Using the induction hypothesis, one gets

t t
9l < f dsAs DIV VlllIVAU Vllt | ds As ) IV Dl VU™ Dl
0 0
t —_— —_— —_—
< ef dg(KoK*? + KK)(Ks/(m— 1))™?
0
<e(l- %)‘(m‘l)(IZt/m)m(IZOIZ% +K)

<e(l- %)’(”Fl)(c’% + ¢ HK(Kt/m)™

<K(Kt/m™  mx=2 (2.28)
and .
IVl < f ds(IUQllIV2UPlls + IVUP)1Z)
0
< e(KoK¥? + KAt < K(Kt) (2.29)
for c large enough.
| ]

3. Proof of main theorem

By Remark 1, following Theorem 2, we may now restrict consatiens to times larger
thantin. We fix a time horizonT > tiny and distinguish two regimes: short-time
regime t < m/K(T); and along-time regimet > m/K(T). Clearly, the short-time
regime does not exist fan = 0; as already noted before (see comments after Theo-
rem 1), this case is trivial and estimates (1.10), provehédourse of Theorem 2 in
the initial regime, extend without any modification to aréiy time. So we assume
henceforth tham > 1.

Theorem 1 follows immediately from an estimate 8P, vu™, valid over the
whole regiont € [tinit, T] and another estimate fof™, V(™. valid only in the short-
time regime. These are proved by induction.

TueoreM 3 (esTivaTEs For UM anp Vu(M) Let m> 1 and te [tini, T]. Then

U™ oo < Ko(T), VU™ fleo < K(T); 18U ™ oo, IV2U™ 10 < K(T)¥2. (3.2)
Furthermore,

U™ Lo IV2U™, < K(T)E2, (3.2)
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Proor. As already noted, the inequalltyagm)ll00 < Ko(T) follows immediately from the
maximum principle, so we consider only the bound for the gmatdand higher-order
derivatives in (3.1). We prove it by induction an assuming it to be true fan - 1.
We abbreviatdy(T), K(T), K(T) to Ko, K, K.

We apply Proposition 1 on the parabolic bal) = [t - M, t] x B(x, M¥/2), with
M1 := IK(T)L. Note that, by definitiont — M} > tinit — 2K (tinit) > > tine > 0. We
consider first the bound (4.17) for the gradient,
||Vu(m)||oon(j—1) < R51|<__(”+1)/2||g||a,Q<i> + Rt_)lKO (K_—(a+%)Rgluu(m—l)”iQ(j) + K_%) (33)
The multiplicative factoRt‘)l is bounded by
1+ (2K) U™ Y qn < 1+ K 7Ko < 2.

On the other hand, by Holder interpolation inequalitiee(eemma 3),

||u(m_1)||a,Q(j> < KOKF+ K_s‘”“Ké_a/2
< (14 SAHKE/K)THKKG™
< (1+ Ca/4)K“Ké_0‘ <1+ C(l/4)02a—2K(1+01)/2. (3.4)
Hence
VUl qun S K Y2Ky, o(T) + KoK ™2 - CPK2KE 2 K2Ko
< oK 4 g Wr2KamEKE 2y oK, (3.5)

which is< K for ¢ large enough.

Bounds for higher-order derivativei,u{™||... [V2u{™||., follow from (4.19) instead,
contributing an extravi~1/2 ~ Kz multiplicative factor. They hold true foc large
enough. Finally, (4.20) yields
18U ™I, -2, 1V2U ™Iy, - < NGl g + Ko (U™ D0 ) 4 KHe/2)
< K2+11/(T) + KO . C(%+2(t—2)(2+a)/(l+a)Kl+a/2 + C—lK_(SJra)/Z
< K_(3+a)/2’ (36)
from which
VAU g gt Tces <
sup  [IVPU™ Iy g + M2V 1 rsee < KEF20(3.7)

(t.x)€tinit, TIXR

and similarly for|du™ ||, c.. Tjes.



Global existence for strong solutions of viscous Burgersagiqn. 123

We take the opportunity to derive from (4.18) a bound ”’vu(m)”a,Q(jfl) (also valid
for [IVu™|l, ... T)xze) that will be helpful in the next theorem,

VU™l - < K21+ KEED2u™ DY, o0)liglla +
KoRUH)/2 (14 K22 oy 4 (RG22, o)9)
< K_lJra/Z (38)
since (from (3.4))u™ Y|, qu < K72, .

THEOREM 4 (SHORT-TIME ESTIMATES FOR V™ anp VVM) Let m> 1 and
t € [tinit, min(T, m/K(T))]. Then

IVl < Ko(MEKMEM™, 9l < K(T)(K(T)t/my™. (3.9)

Proor. We abbreviate, as beforg(T), Ko(T), K(T), K(T) to Ko, Ko, K, K and prove
simultaneously the bounds ¢v™||., and||VV{™||,,, assuming them to be true for-1.

(i) (bound forvﬁm)) As in the proof of Theorem 2 (i), the caserof= 1 is essentially
trivial: namely, using Lemma 2, we have fog K1

t — —
VOl < f AU VO] < KoKt < Ko(KD). (3.10)
0

So, we now restrict the considerationsug> 2.

Assume first that < (m— 1)/K, so thatt is in the short-time regime fax™).
By Lemma 2 (see proof of Theorem 2 (ii)),
t

M. < f dsIVE D]l VU™ )
0

IA

f t dsKo(Ks/(m—1))™ K < (Kt/(m - 1))"Ko(K/K)
0

¢ Ko(Kt/(m—1))" < ZKo(Kt/m)™ (3.11)

for c large enough.

IA
NI -

Forste[(m- 1)/IZ, m/K_], one uses, instead,
IVl < UVl + 11U Pl < 2Ko

and obtains

(m-1)/K m/K
Ml < f dsIV™ D) VU + f SV Y VU
0 (m-1)/K

< %KO(Kt/m)m + K1 2KoK

< Ko(Kt/m)™ (3.12)
for c large enough.
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(ii) (bound foerﬁm)) We start from the observation (see (2.2)) thW&t satisfies the

transport equatiord(— A+u™b. v)(V™) = -v(™1. vy and apply Schauder
estimates o) = QU)(ty, xo) as in the proof of Theorem 3, withl! ~ K(T)™2,

b =u™Dandf := V™. vu™D, |n the course of the proof of Theorem 3, and
in (i), we obtained|u™ Y|, on < Ko and

U™ Dy o € KE20 IV qu < Ko(KE/m)™, [IVU™ D), g0 s K2,

(3.13)

Furthermore, from Holder interpolation inequalitiesgdeemma 3) and induc-
tion hypothesis,

IV™ D], oo € KK (Kt/(m— 1)mD, (3.14)
Hence (using once again the induction hypothesis)
IV, 00 VU™ Dl g0 + IM™ D]l g0 I7U™ D], o

(Kt/(m—1)PMD(KITKIK + KoK 172
¢ IKE2(Kt/(m— 1), (3.15)

[11l0,Q0

A NN

A priori we should now use the Schauder estimate (4.18) ta&puv™||, oi-v;
as in the proof of Theorem B?,;l <2,s0

A

IV grn s K2, + KY2Ko (14 (K72ju™y,)?) (Kt/mym
K_—(l+a)/2||f||a + K_l/ZK_O(K_t/m)ﬁm. (3.16)

A

The second term in (3.16) is bounded d}K (Kt/m)®™, in agreement with the
desired bound (3.9), but not the first one, which is bounded by

¢ K (Kt/(m= 1),
In order to get an integrated bound of ordlé_t,(m)/‘m for the first term, we need

a refinement of Proposition 1. Fity(x1) € Q1. We let (fork > 0 large enough
so thatQU=M(ty, x;) ¢ QW)

T (t, x) == vM(t, X) + f tlf(s,xl)ds (t,x) € QU Ny, x1)  (3.17)
t

so thatd™ satisfies the modified transport equation
0y — A + V™D V)M (¢, x) = f(t, X) (3.18)
with

f(t, %) 1= f(t, ) = f(t, xq). (3.19)
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Note thatVi™ = vv(m v2HM = vv(™  This introduces the following modifica-
tions. First, lettin _(' k) = B(xq, MUK/2),

10 _
|I\7(m) — V(m)”oo,Q(j’k)(tlel) < f . dalf(S)”ooé(lj—k) < K()(Kt/m)ﬂm (320)
t,—-Mi

as follows from (3.11), (3.12). Thuls{.\/““)uoo QU S Ko(Kt/m)f™ is bounded
like V™|, qun. Second (see (4. 26)j(t, X) — f(te, x1) = f(t,x) — f(t, x1) in-
volves values off only at timet. (Eventually this spares us having to bound
inductivelyd,vm).

We now go through the proof of Proposition 1, writid§{t,, x;) as the sum of a
seriesf)  (t, X1) + Tty o1 (W — W) (t, x1), and binding onlyivVlle, = [IVViles
and||V%¥|. = ||[V?V|l». Instead of (4.27), we get from the maximum principle

) ty
sup [T —¢M| < MUK+ J[ ~dgIf (I, goso + U™, sup VI |,
Q(] 1-k) t;—Mi-1-k 1 Q(lj—lfk)

(3.21)

where

t ) t1
Jf - (-)ds:= M‘(“l‘k)f - (-)ds
t—Mi-1-k ty—Mi-1-k

is the average over the time interval  MI~*, t;]. We have proved above that
||f(5)||w,§(ln < ¢ IKB2(Ks/(m - 1),

thus (by explicit computation)

g _
f dsif(sll, B0 SC lK(S*")/ZJ{: ds(Ks/(m— 1)P(mY
tl—Mj’L t M —1-k
= C—lK(3+w)/2(Kt/(m _ 1))B(m—l)ak, (3.22)
with

1

Meippmy_ L
% Bm-1+1

(tﬂ(m—1)+1 (=M j—1—k)ﬂ(m—1)+1) '

Letko := inf{k > 0; Mi-1"K < t/m}; sinceMi~1 > t/m by hypothesisMi-1+ ~
t/m. Fork > kg, ax ~ 1, as follows from Taylor’s formula; bounding al}, k > 0

by 1 would yield the estimate (3.16). However, fok ko, ax < M*IL which

is a much better bound fdg — k large. Summarizing, the only change in the
right-hand side of (4.34) is th#f||, may be replaced by

Z Mk Jf dslIf(9l, go-ro s TKEV2(Kt/(m-1)PM DAL+ Ap),
1

ty— Mi-1-k
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(3.23)
where
As = Y M2 < (Kt/m)2 (3.24)
k>ko
and similarly
ko—1 Tt _ _
A= Z |vr'<“/2|v|'HE < Mle(-2/2(Kt/m) ~ (Kt/m)*/2. (3.25)
k=0

Altogether, with respect to the rougher bound (3.16), weehgained a small
multiplicative factor of ordeA; + A, < (Kt/m)?, with 8 := /2. Thus

¢ IK(Kt/(m=1)P™D . (Kt/m) + ¢ *K(Kt/m)P™
c K (Kt/m)yPm. (3.26)
| ]

IVl gon S
<

4. Holder estimates

We prove in this section the elementary Holder estimategther with a precise form
of the Schauder estimates, which is crucial in the proof oédrbm 1, provided in
Section 3.

DerinitioN 3 (HOLDER sEMI-NORMS) Lety € (0, 1).
1. f: RY - R isy-Holder continuous if

[fo(X) — fo(X')]

foll, ;== su
Ifoll = sup —=—0

x,x'€Rd
2. f:R, xRY - R isy-Holder continuous if

[f(t,x) — f(t', x)|
Ifll, := sup - T
(t,%),(t’,x)eR, xRd |X - X |7 + |t -t |y

In the denominator appearing in the definition|idf,, we find a power of the
parabolic distancedpar((t, X), (t', X)) = X = X'| + V|t —t/|. Note that|| ||, is only a
semi-norm, sincéil||, = 0. We also define Holder semi-norms for functions restdicte
to Qo c R, x RY or Q c RY compact, with the obvious definitions,

[fo(X) = fo(X)| [f(t,x) — f(t', X)|
lIfoll,.q, := sup M Ifll,o:= sup ( ,) ( . )/2. (4.1)
xxeQe X=X/ XL x)eQ [X = XY + [t =]

Remark.For f : R, x RY — R, we use in this article either the parabolic Holder
semi-norm| f|l,.q or the isotropic Holder semi-norift (t)|l..q, for t € R, fixed. The
distinction is really important in the proof of Theorem 4) (iiClearly, [|f (t)llo,0, <
[Iflle,ixq, if | is SOme time interval containirtg
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Lemma 3 (HOLDER INTERPOLATION ESTIMATES)
1. (onRY) Let @ c R be a convex set, ancbu Qy — R such that]|uolle,qq;
[IVUolleo,q, < 0. Then

lIUolle.qo < llUollS & IIVUoll%, o, @€ (0.1). (4.2)

2. (onR, xRY) Let Qc R, x RY be a convex set, and:tlRY — R such that
(lUllo,@» [V Uollco,@s l10tUpllco,@ < o0. Then

Iulle.q < 2(IUIEGIVUIL o + WIS IOwITS) . ae(@1).  (4.3)

Proor. (See Lieberman, 1996) We prove (ii). Dét= (t, X) andX’ = (', X) in Q, then

lu(X) - u(x)|

td
‘f —u((1-7)X+7X)dr
0 dr

< t=t]10Ullwg + X = X| [[VUllo.o
< 2max(lt — ] 1eUllee.0s X = X IVUlleo.0) -
(4.4)
On the other handy(X) — u(X’)| < 2||ull». Hence
Ju(X) = u(X")| < 2 max(llull2; g a2/ 2, Ul SV, o). (4.5)
| |
Lemma 4 Let w : RY — R bea-Hodlder. Then
IV u)lleo < C(d, 6, )t 2 jugll, (k= 1); (4.6)
V22wl < C'(d, 7, )2 ugll, (¥ € (0,1)); 4.7

lle”uo — € %Uollo < C”(d, @)t —t)"?|ltolls (2 €(0,1), t>t >0). (4.8)

Proor. (4.7) follows by Lemma 3 from the bounds (4.6) witk= 2, 3. Thus, let us first
prove (4.6). The regularizing opera@ is defined by convolution with respect to the
heat kernep. By translation invariance, it is enough to bound the quanti

(&) 1= V(€% Uo)(0) — V(e uo)(e)

in the limite — 0. The quantities in (4.6) are invariant through the sulbsttit uy —
Uo — Up(0), so we assume thap(0) = 0. We may also assumg < Vi. LetA :=
tP/2 with B = (1 - @)/d; note thate] < A < Vi. We split the integral into three
parts,l () = l1(g) + I2(¢) + I13(g), with

l1(e) := y AdXVK_lpt(X)(UO(X) — Uo(X + &),

l2(e) = oA dx (V< pi(X) — V< pi(x + £))(Uo(X) — Uo(0)) (4.9)
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I3(e) = (f dx— f dx) VI pi(x + €)(Ug(X) — Ug(0)). (4.10)
[X>A |X—g[>A
We usegup(X) — Up(X + &)| < ||uolle l€|* in the first integral, and get
11(2) < uolle A% ¢4 D/26] = Jugl /2 e]. (4.11)
For the second integral, we use
&
V) - V(X + 8)l 5 t'—/'z P9 and  Juo() - Uo(O) < Iluollal”,

yielding the same estimate. Finally, the integration vaduim the third integral is
O(A%1g]), hence

13(8) < IIUolla A* Helt AT < [lugll A%t 6421l - (lel/A)"
is negligible with respect to the first integral (compardw#.11)). Takings — 0, this

gives the desired bound V(€ Up)||co-
Finally, (4.8) may be obtained through the use of the fractiaerivative

VI : ug > (|V|“uo DX f dfdwa“é(x-y)fuo(y)),
namely,

I(€”uo — €"2ug)(¥)| =

ﬁ tdS f dyasps(X—y)uo(y)‘ = ft tds f dyAps(X—y)Uo(y)‘

t
< f ds f dy| V2 2ps(x = )| [IVI"Uo(Y)] < (t*2 = (t')*") lIuolla
»
< (t=t)*?llugllo- (4.12)

CoroLLary 2 Let g: [0,t] x RY — R be a continuous function such th@k)so are

uniformlye-Holder, andy < . Then s— [[V2(e"9%gy)|l, is L and, for0 < t' <t,

t
f ds|IV3(e" P gy)ll, < C”(d, 7, @)(t - t)“? sup igsla- (4.13)
§

e[t ]

We now turn to our Schauder estimates. The multi-scale pbtife Proposition
below is inspired by Wang (2006). We fix a constdht> 1, e.g.M = 2, for a dyadic
scale decomposition.

DerNITION 4 (PARABOLIC BALLS) Let (to, X)) € R x RY and j € Z. Then, the scale j
parabolic ball issued fronfto, Xo) is the closed subset(@(to, xo) := {(t.X) € R x
RY; tg — M <t < tg, x € B(Xo, MI/3)}.
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The set{(t,X) | t < to, dpar((t, X), (to, X)) < MI/2} is comparable t&@Q(to, Xo), in
the sense that there exé, ok; > 0 such that

QW (to, %)  {(t, X) | 't < to, dpar((t, X), (to, Xo)) < MUFK)/2y o QUirekorok)/2 (g, x5

(one may actually choog#; = 0), which is whyQW(to, xo) is called a ’ball’; but mind
the causality conditioh < to. In the sequel we laik = k(M) be some large enough
integer, depending only oM, used in several occasions to maké&etient parabolic
balls fit exactly into each other. The main property of pafighwalls in our context
is the simple scaling property for locally bounded solusienof the heat equation
(0¢ — A)u = 0: for all

k= (K, ... Kd), KL, ..., kd = O,|V¥U(to, Xo)l < (MTVAK sup  |ul(lk| = k1 +. .. +Kq),
6parQ(i)(t0»XO)

where
9parQ(to, %) := ({to = M1} x B(x0, M) U ([to = M, to) x 9B(xo, M1/2))

is theparabolic boundanof QW(t, Xo). From this, we simply deduce the following:
let

Q) (to %0) := {(t. X) € QV(to, X0) | dpar((t, X), FparQV(to, X)) = MY} (K < ),
(4.14)

then
sup [V¥ul < (M2 sup u),
Q) (to x0) QW (to,%o)
which is a quantitative version of the well-known regulariy property of the heat
equation: ifuis bounded on somgscale parabolic bal)(, thenv*uis boundedway
from the parabolic boundary @‘V. In particular, sinc&Q{-D(to, o) c Qgilﬁk)(to, X0),
one has:
sup VUl < (M) sup ul.
QUY(to,%o) QW (to, %)

ProposiTioN 1 (ScHAUDER ESTIMATES) Let v solve the linear parabolic PDE
(0t — A+ a(t, ))u(t, X) = b(t, ) - Vu(t, ) + f(t, x) (4.15)
on the parabolic ball @ := QU)(ty, xp). Assume: u is bounded;=a0;
[f(t,x) — f(t', X))

Iflle :=lIflle.qn == sup < o0 (4.16)
’ T ey X X7+ [t = ]2

for somex € (0, 1), and similarly||al|,, ||blle < c0. Then

sup|vul < M“ZR#{M"“/anua + (MIRSMIBIZ + M /?fall,, + M-i)sup|u|}, (4.17)
Q-1 Q)
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VUl qu-n < MTI/2R G2 Mite)2 1)),

f _1 . .
+ (M 2R AC e g Qe \iGZ g, + Mlxz)S‘iP'ul} ,
Qu
(4.18)

suplqul, sup|v2u| < Ry {Mj“/znfuw + (MRS HIbI + MI*?jal|, + M-")sup|u|},
Q-1 QU1 Qu)
(4.19)

and for eveny’ > a,

18:Ullo.qu-- V2Ully qu- s MTI2RIEFT1D el g,

i _l2+a @ i i
+ (Mja/ZRb 5(2+a’)/(1+ )||b||51/2+a)/(1+a) + MJa/ZHa”a + M—J)Sup|u|} ,
QW
(4.20)
: -1
where R := (1+ MI72|b(to, xo)|) )
Remark:Upon removing the conditioa > 0, we would get the same estimates,
multiplied byeM’ SURn (-3,

Proor. Let _ _
6(f, %) = u(MIE MI72R),
b(f, %) := MI2b(MI, MI/2%),
f(€ %) = M f(MIE, MI/2R),
A %) = Mia(MIt, MI725).
Then, the PDEd — A + a)u = b- Vu + f on QW reduces to an equivalent PDE,
(0f— A+ 30 =b-Vi+ f on a parabolic balQ of size unity. Assume(leaving out

for sake of conciseness the powersRgf= (1 + [b(to, Xo)|) ) that we have proved an
inequality of the type

sup|V*Ul < (nf~ lla + (IBIE; + 18l + 1) syplm], (4.21)
Qe Q

respectively

194l 5 < (nf llo + (DI + 118, + 1) synm]. (4.22)
Q
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By rescaling, we get

sup|veul < (M%) (M““amnfuw + (((MI2Hbll, ) + (M) fall,, + 1) sup|u|],
QU-D QU
(4.23)

(IV¥Ullo,qi-n <

(M2 (M“““/z)nfua + (M2l Y + (M)l + 1) sup|u|).
QU
(4.24)

This gives the correct scaling factors in (4.17, 4.18, 44.20). Thus, we may
assume thaj = 0. In the sequel we write, for shoit, - ||, instead of| - ||, g0, and
Il - llo instead of sugo | - |-

The general principle underlying the proof of the Schaudgimeates in Wang
(2006) is the following. Lettf,x;) € Q@kl). One rewritesu(ty, x;) as the sum of
the seriesi(ty, X1) = Uk,+1(t1, Xa) + Xy 1 (Ukea(ta, Xa) — Uk(ts, X1)), whereug, k > kg +1
is the solution orQ(l‘k) = QUN(ty, x1) of the 'frozen’ PDE

(0t — A + a(ty, x))uk(t, X) = b(ty, X1) - Vuk(t, X) + f(t1, X1) (4.25)

with the initial-boundary conditiouk|a o = u|a Q- We split the proof into sev-
pari<y par<y
eral steps.

(i) (estimates fotux,1 — ux|) One first remarks that; — u, k > k; + 1 solves orQ(l‘k)
the heat equation

(0r—A+a(ty, x1)-b(ty, X1)-V)(uk—u) = (b(ts, X1)—b)-Vu+(f(t1, x1)—f)—(a(ts, x1)-a)u
(4.26)

with zero initial-boundary conditioruf — u)|a o = 0, implying by the maxi-
L. par<y
mum principle
SUP |Uk+1 — Uk| < SUP |Uk+1 — Ul + supluk — U
Qg—kfl) Q(lfk—l) Q(lfk)

< M2 £, + flallallulleo + (1Dl sup|vul|. (4.27)
Q17
(i) (estimates for higher-order derivativeswf.,) Recall thatuy, 1 is a solution of
the heat equatiord{ — A — b(ts, X1) - V)uk+1 = f(t1, x1) with initial-boundary
Conditionl_jkﬁllapa,Q;(kl”) = u|aparQ1(k1+1>. -
Assume firstib(ty, x1)| < 1. As follows from the standard estimates, recalled
before Proposition 1.

k1/2y1 2 k:
VUi sall,, o:ta2 < (M Y2 U, SUP [BtUkysals SUP [VPUksal € MUl
1 —(ky +2) —(k; +2)
1 1
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(4.28)

V2 oall, 0002 S (M) o, (4.29)

If |b(to, X0)| > 1, then one makes the Galilean transformatiar X — b(tg, Xo)t
to get rid of the drift, after which the boundary Q‘;(k”l) lies at distancdR =
O(M~*/2/|b(to, X)) instead ofO(M~¥/2) of (ty, x;); thus, in general,

—(1 2 k1/2y1
||Vuk1+l||a,QI(k1+2) S Rb( +01)/ (M 1/ ) +0/||u||oo’

2 —1p nk
sup [dtUiy+1l, SUP VU1l S Ry M |Ul|oo, (4.30)
Ql(k1+2) QI(kFZ)

||V2uk1+l||(Y,Q1(kl+2) < Rg(lJr(Y/z)(Mk1)1+01/2||u“00. (431)

(i) (estimates for higher-order derivativesf;; — ux) Similarly to (ii), we note that

(iv)

(-k-1)

Uks1 — Uk is a solution orQ; of the heat equation

(0r = A+ a(ty, x1) = b(ty, X1) - V)(Uks1 — k) =0

Thus
SUP [9¢(Uke1 — Ul, SUP [V2(Uke1 — W)l s MFRG® sup U1 — Uil, (4.32)
Q( k-2) Ql—k—z Q( k-1)
IV (U1 = Ul g2 < (M 2RIE72) sup fues — i (4.33)
Q( k-1)

is bounded using (i) in terms &%, ||bll., || f|l., and SUR» [Vul.
(Schauder estimates for higher-order derivatives)@umming up the estimates
in (i), (ii), (iii), and noting that- - ¢ QM ¢ Q{1 ¢ QY _y, for ok =
k(M) large enough, one obtains
M~ sup|dul, M™% sup|v2ul <
(0) (0)
EH) e

Ry (M) M2 11§11, + [allllulleo + IIblle SUP VUl |+ [[Ulleo ¢ -
Qa0

(4.34)
By interpolation (see immediately thereaﬂer),égkp . |[Vu|is bounded in terms
s

of ||lull and sugo, [V2ul. Thus, in principle, (4.34) gives a bound fBFu.
Oy

However sinceQEo)k ok 2 Q(Ok), onecannotfix k;. Instead we shall bound

sup, M~ ki supb«» |V2ul, and similarly for the dferent gradieriHolder norms
considered in the Proposition. This explaimky ultimately we must consider
the values oWu, V2u on the whole parabolic ba)®, not only on the subset
Q1. where our results are stated.
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v)

Now

1/2
sup [Vul s[ sup |V2u|] (lulls)¥? < & sup [V2ul+& ?ulle (4.35)

(0) (0) (0)
Q(fklﬂsk) Q(fklﬂsk) Q(fklﬂsk)

for everye > 0. Hence (using (4.34)), choosia§ ~ R,/||bl|,, one gets

supM™ sup|V°ul < RyH{(M™) 2 (1111, + (lally + RoHIBIZ)IIUlle) + llulleo} -
= Qi)

(4.36)

implying, in particular, the bound (4.19) f&?u, from which (4.35, 4.34) yields
the bound (4.19) fo:u.

Using the estimates (4.19) and (4.35) with- 1 yields also the gradient bound
(4.17).

(Schauder estimates for Holder norms)

Let us now bound

||V2U|| © N sup |V2U(t2, X]_) - VZU(tg, X2)|
Q0 1y ,
O ). )< par((t1, X1), (t2, X))

or, equivalently||d:ull, Q@ Assume, e.gl; > tp, and {2, X2) € QU*(ty, x1),
Q0

ko > kg + 1, with dpar((ts, X1), (t2, X2)) ¥ M~/2. The hypothesi&, > k; + 1
excludes the case whedgar((t1, X1), (t2, X2)) is comparable taV~/2 a case
which is not needed, since it is already covered by the estsraroved in (iv).
Then,

[V2u(t, X) — V2u(t', X)| < 11 + 2 + 13 + 14,

with (using (4.33) foll, I, and (4.32) for s, 14)
11 = [V2U, (t2, X2) = V2Ui, (t2, X2)| < (M) 2R 20l dpar(ty, X4 to, X2);

(4.37)

ko1

l2= > 19(Uka — W)t Xa) = V2(Ukr1 — Uk (t2, Xo)|
k=ky

< R Ao (b, e T, %)

kz*l
Z(Mk”)“’“] {ufna + llalallulles + 1Bl sup|Vu|]

k=Ki QY

< dpar(ty, Xa; to, Xo)"REH/2 {u Fll -+ lalloflulls + 1Dl SUp |Vu|]; (4.38)
Q{ !



134

J. UNTERBERGER

and
l3:= 3 IV (Ut — W)t Xl o= ) 93Ukt — W)(t2, %)l (4.39)
k>kp k>ko
are
< dpar(ty, Xg; t2, Xz)"R{)l [”f”a + |lallollullee + [10l]e SUIOIVUI]- (4.40)
Q(lsz)
Hence

M-y 29 ’ M-k er2 2, <« g @+a'/2)
(M)l g0, (M) 292, g0 <Ry

- (Mt {nfna +Ibll sup [Vul + ||a||w||u||m] + ||u||m] ,(4.41)
o

compare with (4.34).

By standard Holder interpolation inequalities (see Liefen, 1996),

Sup |Vu| S ||V2u||1/(2+a) ( Sup |u|)(l+a/)/(2+a/) S

(0) @, EO)k ) OO
Q(fklfék) L Q(

—kq —6K)

2 (Iv2u| |+ e G (4.42)

“”QE?)krak

for everye > 0. Choosings2*® ~ RY**/2/| |||, yields as in (iv) a bound for

SURso(M™) T2 vy Q9 from which one deduces, in particular, (4.20).
Q%

In order to obtain the bound (4.18) f§¥ull, o-n, we proceed initially in the

same way, with the only ffierence being that one may také = « in (4.38),
since one gets a serig?:’ki M~¥/2 of orderO(1). Thus, (4.41) becomes

(M2 19U, 0 <

-(k-1)

R, (/2 {(Mkl/z)“” [nfna +1bll, sup [Vul + ||a||w||u||m] + ||u||m}.
Qa0

(4.43)

One now uses Holder interpolation inequalities to boundh terms ofj|u||.. and
V2u. Instead of (4.44), one has here

1/(1+c C C
sup [Vul < [IVulYSe? (sup u)™/®) < vyl

. +87(l+a/)/(l||u“m
O] 72 (—kq —0k) (0)
Q(fklﬂsk) ok Q(fkro‘k)

Q’QE?)klfﬁ
(4.44)

for everye > 0. Choosing*® ~ R* /2| p||, yields as in (iv) a bound for
Sup(lzo(M—kl)(l+(1/)/2||vu“a Q%' from which one deduces, in particular, (4.18).
Q9
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