PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structure and compression strength characteristics of the sintered Mg–Zn–Ca–Gd alloy for medical applications

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Magnesium-based materials have promising mechanical properties and potential to serve as implants for loadbearing temporary applications. The main concern about such implants is their strength and resistance for the acting forces. In this investigation, magnesium-based biodegradable Mg65Zn30Ca4Gd1 alloy prepared by combination of innovative Mechanical Alloying (MA) and Spark Plasma Sintering (SPS) methods, was studied for the structure and mechanical properties. Structural studies were performed using X-Ray Diffractometer (XRD) and Scanning Electron Microscope (SEM). XRD studies were conducted to gain an overview of the phase composition in powdered and sintered samples. The energy dispersive spectroscopy (EDS) additionally determine the chemical composition of the samples. SEM observations were used to examine the morphology of the sinters on the fractured surface after the compressive tests. Mechanical properties of the Mg65Zn30Ca4Gd1 alloy were examined by compressive tests, to determine the compressive strength and Young's modulus of the samples at room temperature. The paper provides information about the density and porosity of the Mg-based alloy and additionally its corrosion resistance. Moreover the work shows advantages and possibilities of forming multi-compound, morphologically homogeneous alloys with high mechanical properties in the powder metallurgy processes.
Rocznik
Strony
1288--1299
Opis fizyczny
Bibliogr. 46 poz., rys., tab., wykr.
Twórcy
autor
  • Silesian University of Technology, Institute of Engineering Materials and Biomaterials, 18a Konarskiego Street, 44-100 Gliwice, Poland
autor
  • Silesian University of Technology, Institute of Engineering Materials and Biomaterials, 18a Konarskiego Street, 44-100 Gliwice, Poland
  • Silesian University of Technology, Institute of Engineering Materials and Biomaterials, 18a Konarskiego Street, 44-100 Gliwice, Poland
Bibliografia
  • [1] A. Ziębowicz, Z. Paszenda, C. Krawczyk, D. Nakonieczny, Trends and perspectives in modification of zirconium oxide for a dental prosthetic applications – a review, Biocybern. Biomed. Eng. 37 (1) (2017) 29–245.
  • [2] M. Jurczyk, Bionanomaterials, 1st ed., Poznan University of Technology Press, Poznan, 2008 (in Polish).
  • [3] F. Witte, Y.F. Zheng, X.N. Gu, Biodegradable metals, Mater. Sci. Eng. R 77 (2014) 1–34.
  • [4] J.F. Loffler, B. Zberg, P.J. Uggowitzer, MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants, Nat. Mater. 8 (2009) 887.
  • [5] S.M. Glasdam, S. Glasdam, G.H. Peters, The importance of magnesium in the human body: a systematic literature review, Adv. Clin. Chem. 73 (2016) 169–193.
  • [6] Y. Zheng, Magnesium Alloys as Degradable Biomaterials, CRC Press is an Imprint of Taylor & Francis Group, Boca Raton, 2016.
  • [7] N. Hort, N.I. Zainal Abidin, A. Atrens, Z. Qiao, Z. Shi, Corrosion behaviour of a nominally high purity Mg ingot produced by permanent mould direct chill casting, Corros. Sci. 61 (2012) 185–207.
  • [8] G.L. Song, Control of biodegradation of biocompatable magnesium alloys, Corros. Sci. 49 (2007) 1696–1701.
  • [9] Q.M. Peng, X.J. Li, N. Ma, R.P. Liu, H.J. Zhang, Effects of backward extrusion on mechanical and degradation properties of Mg–Zn biomaterial, J. Mech. Behav. Biomed. Mater. 10 (2012) 37–128.
  • [10] S.X. Zhang, X.N. Zhang, C.L. Zhao, et al., Research on an Mg–Zn alloy as a degradable biomaterial, Acta Biomater. 6 (2) (2010) 40–626.
  • [11] K. Hirai, H. Somekawa, Y. Takigawa, K. Higashi, Effects of Ca and Sr addition on mechanical properties of a cast AZ91 magnesium alloy at room and elevated temperature, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 403 (1–2) (2005) 80–276.
  • [12] N. Erdmann, N. Angrisani, J. Reifenrath, et al., Biomechanical testing and degradation analysis of MgCa0.8 alloy screws: a comparative in vivo study in rabbits, Acta Biomater. 7 (3) (2011) 8–1421.
  • [13] P. Yin, N.F. Li, T. Lei, L. Liu, C. Ouyang, Effects of Ca on microstructure, mechanical and corrosion properties and biocompatibility of Mg–Zn–Ca alloys, J. Mater. Sci. Mater. Med. 24 (6) (2013) 73–1365.
  • [14] H.R. Bakhsheshi-Rad, M.R. Abdul-Kadir, M.H. Idris, S. Farahany, Relationship between the corrosion behavior and the thermal characteristics and microstructure of Mg–0.5Ca–xZn alloys, Corros. Sci. 64 (2012) 97–184.
  • [15] H. Du, Z.J. Wei, X.W. Liu, E.L. Zhang, Effects of Zn on the microstructure, mechanical property and bio-corrosion property of Mg-3Ca alloys for biomedical application, Mater. Chem. Phys. 125 (3) (2011) 75–568.
  • [16] P. Gill, N. Munroe, R. Dua, S. Ramaswamy, Corrosion and biocompatibility assessment of magnesium alloys, J. Biomater. Nanobiotechnol. 3 (2012) 10–13.
  • [17] T. Anan, S. Yoshimoto, Y. Kawamura, M. Yamasaki, Mechanical properties of warm-extruded Mg–Zn–Gd alloy with coherent 14H long periodic stacking ordered structure precipitate, Scr. Mater. 53 (7) (2005) 799–803.
  • [18] Y. Huang, D. Fechner, M. Stormer, C. Blawert, F. Witte, C. Vogt, H. Drucker, R. Willumeit, K.U. Kainer, F. Feyerabend, N. Hort, Magnesium alloys as implant materials – principles of property design for Mg-RE alloys, Acta Biomater. 6 (5) (2010) 25–1714.
  • [19] Y.J. Wu, Y.J. Xue, Z.Z. Wang, L. Yang, X.B. Zhang, Biocorosion behavior and cytotoxicity of Mg–Gd–Zn–Zr alloy with long period stacking ordered structure, Mater. Lett. 86 (2012) 5–42.
  • [20] A. Radoń, A. Drygała, Ł. Hawełek, D. Łukowiec, Structure and optical properties of Fe3O4 nanoparticles synthesized by coprecipitation method with different organic modifiers, Mater. Charact. 131 (2017) 148–156.
  • [21] Y.X.J. Wang, Superparamagnetic iron oxide based MRI Quant. Imaging Med. Surg. 1 (1) (2011) 35–40.
  • [22] H. Hifumi, S. Yamaoka, A. Tanimoto, D. Citterio, K. Suzuki, Gadolinium-based hybrid nanoparticles as a positive MR contrast agent, J. Am. Chem. Soc. 128 (47) (2006) 1–15090.
  • [23] F. Feyerabend, J. Fischer, J. Holtz, et al., Evaluation of shortterm effects of rare earth and other elements used In magnesium alloys on primary cells and cell lines, Acta Biomater. 6 (5) (2010) 42–1834.
  • [24] C. Suryanarayana, Recent developments in mechanical alloying, Rev. Adv. Mater. Sci. 18 (2008) 203–211.
  • [25] S. Lesz, M. Kremzer, K. Go, lstrok, R. ombek, Nowosielski, Influence of milling time on amorphization of Mg–Zn–Ca powders synthesized by mechanical alloying technique, Arch. Metall. Mater. (2018), In press.
  • [26] D.T. Chou, D. Hong, P. Saha, S.J. Chung, A. Sirinterlikci, M. Ramanathan, A. Roy, P.N. Kumta, M.K. Datta, Structure and thermal stability of biodegradable Mg–Zn–Ca based amorphous alloys synthesized by mechanical alloying, Mater. Sci. Eng. B 176 (2011) 1637–1643.
  • [27] High Pressure Institute PAN, Helium Pycnometer, 2017 June http://labnano.pl/aparatura/piknometr-helowy/model-1340.
  • [28] PN-H-04320, Static Test of Metal Compression, 1957.
  • [29] Marco, Mylar – Protective Material Conforming to RoHS, REACH and V-2 Combustion Class, 2017 May http://www.labels.pl/mylar.html.
  • [30] ASTM F746 – 04 Standard Test Method for Pitting or Crevice Corrosion of Metallic Surgical Implant Materials, 2014.
  • [31] M. Kaczmarek:, Physiochemical Properties of Surface Layers of Superelastic NiTi Alloy Designed for Coronary Stents, Silesian University Press, Gliwice, 2015 (in Polish).
  • [32] P.E. DeGarmo, Materials and Processes in Manufacturing, 5th ed., Collin Macmillan, New York, 1979.
  • [33] M.B. Yang, T.Z. Guo, H.L. Li, Effects of Gd addition on as-cast microstructure, tensile and creep properties of Mg–3.8 Zn–2.2Ca (wt.%) magnesium alloy, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 587 (2013) 132–142.
  • [34] Y. Chen, S. Tekumalla, Y.B. Guo, M. Gupta, Introducing Mg–4Zn–3Gd–1Ca/ZnO nanocomposite with compressive strengths matching/exceeding that of mild steel, Sci. Rep. 6 (2016) 32395, https://www.nature.com/articles/srep32395.
  • [35] R. Nowosielski, R. Babilas, K. Cesarz-Andreczke, A. Gawlas-Mucha, S. Lesz, P. Sakiewicz, Resorbable Materials for Medical Implants, Silesian University of Technology Press, Gliwice, 2017 (in Polish).
  • [36] Y. Zhang, M. Zhang, Three-dimensional macroporous calcium phosphate bioceramics with nested chitosan sponges for load-bearing bone implants, J. Biomed. Mater. Res. 61 (1) (2002) 1–8.
  • [37] J. Rasek, In the Field of Crystallography and Materials Science, Publishing House of Silesian University, Katowice, 2002 (in Polish).
  • [38] J.D. Hanawalt, Manual search/match methodes for powder diffraction, Powder Diffr. 1 (1986) 7–13.
  • [39] H.L. Li, R.J. Cheng, F.S. Pan, H.J. Hu, M.B. Yang, Comparison about effects of minor Zr, Sr and Ca additions on microstructure and tensile properties of Mg–5Gd–1.2Mn–0.4Sc (wt.%) magnesium alloy, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 545 (2012) 8–201.
  • [40] E. Klar, P.K. Samal, Effect of density and sintering variables on the corrosion resistance of austenitic stainless steels, Adv. Powder Metall. Part. Mater. MPIF 3 (1996), 11-3–11-17.
  • [41] R. Nowosielski, K. Cesarz-Andraczke, Impact of Zn and Ca on dissolution rate, mechanical properties and GFA of resorbable Mg–Zn–Ca metallic glasses, Arch. Civ. Mech. Eng. 18 (1) (2018) 1–11.
  • [42] P.L. Franciska, A. Erryani, D. Annur, I. Kartika, Corrosion behavior of magnesium based foam structure in Hank's solution, IOP Conf. Ser. Mater. Sci. Eng. 202 (2017) 012035.
  • [43] J. Yu, J. Wang, Q. Li, J. Shang, J. Cao, X. Sun, Effect of Zn on microstructures and properties of Mg–Zn alloys prepared by powder metallurgy method, Rare Met. Mater. Eng. 45 (11) (2016) 2757–2762.
  • [44] E. Klar, P.K. Samal, Powder Metallurgy Stainless Steels: Processing, Microstructures and Properties, ASM International, 2007.
  • [45] S. Shabalovskaya, J. Van Humbeeck, Biocompatibility of shape memory alloys, in: T. Yoneyama, S. Miyazaki (Eds.), Shape Memory Alloys for Medical Applications, Woodhead Publishing Limited, Cambridge, UK, 2008.
  • [46] Z. Gronostajski, P. Bandoła, T. Skubiszewski, Argon-shielded hot pressing of titanium alloy (Ti6Al4V) powders, Acta Bioeng. Biomech. 12 (1) (2010) 41–46.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1d9e4323-6d68-4891-8abb-bc9671ed25e0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.