Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Analiza termiczna mikrogrzejników metodą 3D-TLM i oprogramowaniem COMSOL Multiphysics dla czujnika gazu MEMS
Języki publikacji
Abstrakty
The gas sensors with Metal-Oxide (MOx) offer new opportunities for MEMS sensors due to their low congestion, high sensibility and fast answer. Microhotplate is the key component in these sensors to control the temperature of the sensing layer. In this work a meander platinum based heater has been fabricated and design. The transmission line matrix 3D-TLM method and COMSOL software are used to predict the homogeneous temperature distribution. Thus, temperatures control of hot areas of micro-heater are very important before any gas sensors and MEMS design.
Czujniki gazu z tlenkiem metalu (MOx) oferują nowe możliwości dla czujników MEMS ze względu na ich niewielkie zatłoczenie, wysoką czułość i szybką odpowiedź. Płyta grzejna jest kluczowym elementem tych czujników do kontrolowania temperatury warstwy czujnikowej. W tej pracy wykonano i zaprojektowano meandrowy grzejnik na bazie platyny. Metoda 3D-TLM z macierzą linii transmisyjnych i oprogramowanie COMSOL są wykorzystywane do przewidywania jednorodnego rozkładu temperatury. Dlatego kontrola temperatury gorących obszarów mikropodgrzewacza jest bardzo ważna przed jakimikolwiek czujnikami gazu i projektowaniem MEMS.
Wydawca
Czasopismo
Rocznik
Tom
Strony
241--245
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
- University of USTO-Oran, Department of Automatic
autor
- Department of Automatics Engineering, University of Sciences and Technology of Oran, Algeria
Bibliografia
- [1] Duffie J. A. and Beckman W. A. (1991). Solar Engineering ofThermal Processes, 2nd edition, John Wiley & Sons, New York.
- [2] M. Dumitrescu, C.Cobianu, D.Dascalu, A. Pascu, S.Kolev and A.Berg (1998). Thermal simulation of surface Micromachined polysilicon hotplates of low power consumption. IEEE, pp. 83-86.
- [3] S. Semancik, R.E. Cavicchi, M.C. Wheeler, J.E. Tiffani, G.E. Poierier, R.M. Walton, J.S. Suehle, B. Panchapakesan and D.L. De Voe (2001). Microhotplate platforms for chemical sensor research. Sensors and Actuators B, vol. 77, pp. 579–591.
- [4] M. Afridi, A. Hefner, D. Berning, C. Ellenwood, A. Varma, B. Jacob and S. Semancik (2004). MEMS-based embedded sensor virtual components for system-on-a-chip (SoC). Solid State Electronics, vol. 48, pp. 1777–1781, 2004.
- [5] J. Cerdà Belmonte, J. Puigcorbe, J. Arbiol , A.Vila, J. R. Morante, N. Sabate, I. Gracia and C. Cane. (2006). High-temperature low-power performing micro machined suspended micro-hotplate for gas sensing applications. Sensors and Actuators B,vol. 114, pp. 826–835.
- [6] Ching-Liang Dai, Mao-Chen Liu, Fu-Song Chen, Chyan-Chyi Wu and Ming-Wei Chang. (2007). A nanowire WO3 humidity sensor integrated with micro-heater and inverting amplifier circuit on chip manufactured using CMOS-MEMS technique. Sensors and Actuators B, vol. 123, pp. 896–901.
- [7] J. F. Creemer, D. Briand, H. W. Zandbergen, W. van der Vlist, C. R. de Boer, N. F. de Rooij and P. M. Sarro. (2008). Micro hotplates with TiN heaters. Sensors and Actuators A, vol. 148, pp. 416–421.
- [8] G. Velmathi, N. Ramshanker and S. Mohan. (2010). 2D Simulations and Electro-Thermal Analysis of Micro-Heater Designs Using COMSOLTM for Gas Sensor Applications. Proceedings of the COMSOL Conference, India.
- [9] M. Gayake, D. Bokdas and S. Gangal. (2011). Simulations of Polymer based Micro-heater Operated at Low Voltage. Proceedings of the COMSOL Conference, Bangalore, India.
- [10] Jianhai Sun, Dafu Cui, L.Xing Chen, Haoyuan Cai and Hui Li. (2013). Fabrication and characterization of a double-heater based MEMS thermal flow sensor. Sensors and Actuators A, vol. 193, pp. 25– 29.
- [11] https://iopscience.iop.org/article/10.1088/1361-6501/aa7443/ meta
- [12] Qi Liu, Guifu Ding , Yipin Wang and Jinyuan Yao. (2018). Thermal Performance of Micro Hotplates with Novel Shapes Based on Single-Layer SiO2Suspended Film. Micro-machines, 9, 514.
- [13] Jagdeep Rahul and Kurmendra. (2019). Analysis of MEMS based Micro-hot Plate for Gas Sensor. Journal of Semiconductor Devices and Circuits ISSN: 2455-3379 (Online) Volume 6, Issue 2 www.stmjournals.com
- [14] D.Berndt, J.Muggli and F.Wittwer . (2020). " MEMS-based thermal conductivity sensor for hydrogen gas detection in automotive applications" ,Sensors and Actuators A: Physical Elsevier, Volume 305,
- [15] R. Hocine, S.H.Pulko, A. Boudghene Stambouli, A. Saidane. (2009).TLM Method for Thermal Investigation of IGBT Modules in PWM Mode. Microelectronic Engineering Journal, Elsevier Science, pp. 2053–2062. [16] Elkalsh, A. Vukovic, P. D. Sewell, and T. M. Benson .( 2016). Electro-thermal modelling for plasmonic structures in the TLM method. Optical and Quantum Electronics, vol. 48, no. 4, p. 263.
- [17] K. Belkacemi, R.Hocine. (2018). Efficient 3D-TLM Modeling and Simulation for the Thermal Management of Microwave AlGaN/GaN HEMT Used in High Power Amplifiers SSPA. Journal of Low Power Electronics and Applications MDPI, 8.
- [18] C. Christopoulos. (2006). "The Transmission-Line Modeling (TLM) Method in Electromagnetics", Synthesis Lectures on Computational Electromagnetics.
- [19] P.W.Webb and I. A. D. Russell. (1995). ” Application of the TLM Method to Transient Thermal Simulation of Microwave Power Transistors “, IEEE Transactions on Electron Devices, Vol.42, N°4, 1995.
- [20] E.Kronberg, A.H Benneker. (1998). Notes on wave theory inheat conduction: A new boundary condition, International journal Heat Mass Transfer, Elsevier Science Ltd. Vol. 41, N°. 1 pp. 127-137. http://dx.doi.org/10.1016/s0017-9310 (97)00099-9.
- [21] R.Hocine, D.Kheris et A.Benemara. (2019).” Thermal Analysis of Micro-heater using Multiphysics FEM and TLM simulations for MEMS based Gas Sensor”. 5th International Conference On Advances In Mechanical Engineering Istanbul.
- [22] F. Samaeifar H. Hajghassem, A. Hassan Abdollahi. (2015). Implementation of high-performance MEMS platinum micro-hotplate. Sensor Review, Vol. 35 Issue 1 pp. -http://dx.doi.org/10.1108/SR-05-2014-654.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1d9d41eb-ff0b-420c-950f-47685491e84a