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Abstract. The Internet shopping optimization problem arises when a customer aims to purchase a list of goods from a set of web-stores with 
a minimum total cost. This problem is NP-hard in the strong sense. We are interested in solving the Internet shopping optimization problem 
with additional delivery costs associated to the web-stores where the goods are bought. It is of interest to extend the model including price 
discounts of goods.
The aim of this paper is to present a set of optimization algorithms to solve the problem. Our purpose is to find a compromise solution between 
computational time and results close to the optimum value. The performance of the set of algorithms is evaluated through simulations using 
real world data collected from 32 web-stores. The quality of the results provided by the set of algorithms is compared to the optimal solutions 
for small-size instances of the problem. The optimization algorithms are also evaluated regarding scalability when the size of the instances 
increases. The set of results revealed that the algorithms are able to compute good quality solutions close to the optimum in a reasonable time 
with very good scalability demonstrating their practicability.
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ping. Partial solution to the most trivial version of the problem 
(just one product, no discounts, no additional costs, and so on) 
comes from software agents [1], so called price comparators. 
However their current functionality is limited to building a price 
rank for a single product among registered offers that fit to the 
customer’s query (search phrase).

It is worth noting that beside all benefits of Internet shop-
ping, it is still a type of shopping that may lead to problematic 
behaviors. One can notice that some customers may be addicted 
to shopping on the Internet. This kind of addiction is some-
how similar to gaming and general Internet dependency. Many 
types of addictions and negative forms of consumptions con-
nected with shopping in general have been widely researched 
and described in both medial and business journals. Business-
Dictionary.com states that shopping is “the process of brows-
ing and/or purchasing items in exchange for money’’. What 
will be important here that the platform is not so important. 
Therefore, Internet shopping experience may cause many of 
these negative behaviors. Follow the publication [2] for more 
information about different types of online shopping behaviors 
and addictions.

State-of-the-art research on the problem we will tackle in 
this paper consists of works that introduced Internet shopping 
optimization problem (ISOP in short) and more complicated 
versions of the mentioned problem, taking into account also 
price discounts. [3] introduced ISOP with the following idea. 
The addressed problem is to manage a multiple item shopping 
list over several shopping locations. The objective is to have all 

1. Introduction

Internet shopping, fitting into a business-to-consumer subcat-
egory, becomes more and more popular thanks to the facilities 
provided by the new information and communication technolo-
gies such as cloud computing, mobile computing (mobile devic-
es – smartphones, tablets), the availability of data centers, and 
the improvement in the payment gateways on trusted computing 
platforms. Products available in web-stores are often cheaper 
than those offered by regular local retailers, and a wide choice 
of offers is available just a click away from the customer. Based 
on outstanding logistics, the delivery can usually be operated 
within 48 hours or less. Customers often need to take into ac-
count that shipping cost are charged, so that it is a good idea to 
group purchased products into sets and buy them from small 
number of retailers to minimize these delivery costs. Automat-
ing such decisions requires three elements: information about 
the product availability, price lists and finally a specialized an-
alytical tool that could find the minimal subset of shops (in this 
work we use shops and web-stores interchangeably) where all 
products from the customer’s shopping list could be bought at 
the lowest price. To automate these decisions one can prepare an 
algorithm / computer tool to calculate the best possible solution 
from the customers perspective. The issue could be perceived as 
an Internet optimization problem connected with online shop-
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shopping done at minimum total expense. It is worth pointing 
out that dividing the original shopping list into several sub-lists 
with items being delivered by different providers increases de-
livery costs. These are counted and paid individually for each 
package (sub-list) assigned to a specific Internet shop in the op-
timization process. Authors focused on the problem definition 
and its complexity analysis (with some sub-cases of the main 
problem). The first algorithms and computational results were 
introduced in [4].
Much more complicated version of ISOP that takes into account 
price discounts was introduced in [5, 6]. The Focus was on the 
problem definition and complexity analysis. Some basic algo-
rithms were introduced. The current paper is focused on the 
introduced problem with new achievements and contributions 
to the shopping optimization topic.

ISOP could be perceived as a base general name for Inter-
net shopping problems since it leaves a lot of space for future 
additional requirements and attributes. Introducing complicated 
multi-objective decision-aided ISOP or a multi-objective prob-
lem could be one the upcoming interesting research steps. Many 
additional decisions could be made by customers with respect to 
their personal shops preferences, trust, delivery time, negative 
factors, and all other significant elements. Since the number 
of decisions could increase, it would be reasonable to support 
the client with a specific system or tool. This program would 
attempt to help them to make reasonable decisions that satisfy 
the customer and do not imply significant price changes. An 
interesting idea of providing a simple tool that helps decision 
makers make good decisions in the financial market is described 
in the literature [7].

In this paper we address the Internet shopping optimization 
problem considering delivery costs. It is of interest from the 
customer side to investigate an extended version of the problem 
which also considers price discounts [5, 6] offered by different 
sellers. The discount policy is based on real world observations 
and similar to that used in [8], in the sense that is expresses the 
discount as a function of the total quantity of money spent in 
the web-store; the more money a customer spends, the bigger 
discount he may obtain. In this work, we assume that there are 
no differences between the quality of the goods the web-stores 
sell beside the prices they charge for the different products.

We introduce a new set of heuristic approaches to solve 
the problem. The set of heuristics is composed of a new light-
weight metaheuristic based on a cellular optimization process, 
a extended greedy algorithm and two state-of-the-art greedy 
algorithms. We have designed the heuristics as a compromise 
solution balancing computational time and results close to the 
optimum solution. We empirically evaluate the heuristics on 
large set of real world data. The set of data was collected from 
32 stores and covered the largest United States-based stores, 
including Amazon, BarnesandNoble.com, Borders.com, Buy.
com, Booksamillion and top sellers among Internet bookstores 
in Poland such as empik.com and merlin.pl. We compare the 
performance of the proposed heuristics to the optimal values. 
The optimal solutions for small problem instances are computed 
using a branch and bound algorithm. To evaluate the scalability 
of the heuristics, we increased the problem size.

To enlighten the pure original content of the paper one 
should notice such important elements as: new original cellu-
lar algorithm created especially to solve a problem, redesigned 
forecasting algorithm, problem-specific modification of a state-
of-the-art algorithm, new world data model as a data generator 
for an experiment, original designed experiment with a vast 
number of computational test, huge portion of computational 
results carefully analyzed and described by the authors.

The paper is organized as follows. Section 2 describes the 
problem model. In Section 3, some of the relevant work is pre-
sented. In Section 4, we consider the extended version of the 
investigated problem. Section 5 provides a detailed description 
of a new set of proposed heuristics. It is followed by experi-
mental results presentation in Section 6. We conclude the paper 
in Section 7.

2. Problem definition

Notation used throughout this paper is given in Table 1.

Table 1 
Notation

Symbol Explanation

M set of products

N set of shops

m number of products

n number of shops

i product indicator

j shop indicator

Mj multiset of products available in shop j

dj delivery price of all products from shop j

yj usage indicator for shop j

pij cost of product i in shop j

xij usage indicator for product i in shop j

T cumulative value of all products bought in all shops

Tj cumulative value of all products bought in shop j

fj(Tj) piecewise function for all products bought in shop j

X = (X1,…, Xn) sequence of selections of products in shops 1,…, n

F(X) sum of product and delivery costs

d(x) 0-1 indicator function for x = 0 and x > 0

X¤ optimal sequence of selections of products

F¤ optimal (minimum) total cost

Internet shopping optimization problem (ISOP) should be 
described as follows. A single buyer is looking for a multiset 
of products M = f1, …, mg to buy in n shops. A multiset of 
available products Mj, a cost pij of product i in store j, and a de-
livery cost dj of any subset of the products from shop j. It is as-
sumed that pij = 1 if i 2/ Mj. The problem is to find a sequence 
of disjoint selections (or carts) of products X  = ( X1, …, Xn), 
which we call a cart sequence, such that Xj µ Mj, j = 1, …, n, 
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[n
j=1Xj = M, and the total product and delivery cost, denoted 

as F(X):= Σn
j =1(δ(|Xj |)dj + Σi2Xj

pij), is minimized. Here |Xj | 
denotes the cardinality of the multiset Xj, and δ(x) = 0 if x = 0 
and δ(x) = 1 if x > 0. Its solution is denoted as X¤, and its 
solution value as F¤.

It has been proved that ISOP belongs to the NP-hard prob-
lems family [3].

3. Related work

Motivated by the problem of buying multiple products from 
different web-stores, [3] modeled Internet shopping as an op-
timization problem, in which a customer wants to buy a list of 
products from a set of online stores at the minimum final price. 
The authors showed that the problem is NP-hard in the strong 
sense and designed a set of polynomial time algorithms for spe-
cial cases of the problem. During previous research different 
versions (specializations) of the Internet shopping problem were 
examined [5]. For example, due to NP-hardness of the optimi-
zation problem, [9] designed a heuristic solution to optimize 
the shopping basket and evaluate it for the customer basket 
optimization problem to make it applicable for solving complex 
shopping cart optimization in on-line applications. Moreover, it 
is proven that the problem is not approximable in polynomial 
time [3]. The archetype of the presented problem was a web-
based customer assistance system dedicated to pharmacy shop-
ping that helps customers find shops in a geographically defined 
range where the entire shopping list could be realized at the best 
total price [10]. For the general discussion on the e-commerce 
problems development and the way it evolves over last years 
one should refers to the situation in the recent past [11].

It is worth noting that there are some similarities between 
ISOP and the well-known facility location problem (FLP) [12]. 
The main characteristics of the FLP are space, the metric, given 
customer locations and given or not given positions for facility 
locations. A traditional FLP is to open a number of facilities 
in arbitrary positions of the space (continuous problem) or in 
a subset of given positions (discrete problem) and to assign cus-
tomers to the opened facilities so that the sum of opening costs 
and costs related to the distances between customer locations 
and their corresponding facility locations is minimized.

Discussions of FLPs can be found in [13–16]. The tradi-
tional discrete FLP is NP-hard [17] in the strong sense. Note, 
however, that the general problem ISOP with price discounts 
cannot be treated as a traditional discrete FLP because there is 
no evident motivation for a discount on the cumulative cost in 
the sense of distances. The important point to note here is that 
this problem and ISOP are not each other’s sub-cases, while 
the traditional discrete FLP is a special case of any of these 
problems.

Looking at the Internet shopping optimization problem with 
the focus on price discounts, one can notice some similarities 
with total quantity discount problem (TQD) [8]. To show the 
similarities and most of all to show distinct differences we 
should enclose mathematical formulation of TQD. One can 
define G as the set of m goods, indexed by k, and S as the set 

of n suppliers, indexed by i. For each good k in G, dk as the 
amount of good k to be procured is defined. To each supplier 
i in S we associate a sequence of intervals Zi = f0, 1, …, maxig, 
indexed by j. Furthermore, for each supplier i 2 S and interval 
j 2 Zi, lij and uij define the minimum and maximum number of 
goods respectively that needs to be ordered from supplier i to 
be in interval j. Finally, for each supplier i 2 S, for each interval 
j 2 Zi and each good k 2 G, let cijk be the price for one item of 
good k purchased from supplier i in its j-th interval.
Similarities between ISOP with price discounts and TQD prob-
lem can be noticed if we threat products to buy M as goods G 
(dk is amount of the same good k) and shops N as suppliers S. 
Piecewise discounting function fj for shop j will be associated 
with a sequence of intervals Zi for supplier i. Price pij of product 
i from shop j can be shown as price cik for one item of good 
k purchased from supplier i. Piecewise function for shop j ap-
plied to a product price fj(pij) should be treated as cijk – price 
for one item of good k purchased from supplier i in its j-th in-
terval. However ISOP includes shipping costs that are specific 
to each shops. This feature makes ISOP new enhanced version 
of the TQD problem.
It is worth pointing out that the decision version of the TQD 
problem is strongly NP-complete. Moreover, no polynomi-
al-time approximation algorithm with constant worst-case ratio 
exists for the TQD problem (unless 
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3. Related Work

Motivated by the problem of buying multiple products from
different web-stores, [3] modeled Internet shopping as an op-
timization problem, where a customer wants to buy a list of
products from a set of online stores at the minimum final price.
The authors showed that the problem is NP-hard in the strong
sense and designed a set of polynomial time algorithms for
special cases of the problem. During previous research dif-
ferent versions (specializations) of the Internet shopping prob-
lem were examined [5]. For example, due to NP-hardness of
the optimization problem, [9] designed a heuristic solution to
optimize the shopping basket and evaluate it for the customer
basket optimization problem to make it applicable for solving
complex shopping cart optimization in on-line applications.
Moreover, it is proven that the problem is not approximable
in polynomial time [3]. The archetype of the presented prob-
lem was a web-based customer assistance system dedicated to
pharmacy shopping that helps customers find shops in a geo-
graphically defined range where the entire shopping list could
be realized at the best total price [10]. For the general discus-
sion on the e-commerce problems development and the way it
evolves over last years one should refers to the situation in the
recent past [11].

It is worth noting that there are some similarities be-
tween ISOP and the well-known Facility Location Problem
(FLP) [12]. The main characteristics of the FLP are space,
the metric, given customer locations and given or not given
positions for facility locations. A traditional FLP is to open a
number of facilities in arbitrary positions of the space (contin-
uous problem) or in a subset of given positions (discrete prob-
lem) and to assign customers to the opened facilities so that the
sum of opening costs and costs related to the distances between
customer locations and their corresponding facility locations is
minimized.

Discussions of FLPs can be found in [13, 14, 15, 16]. The
traditional discrete FLP is NP-hard [17] in the strong sense.
Note, however, that the general problem ISOP with price dis-
counts cannot be treated as a traditional discrete FLP because
there is no evident motivation for a discount on the cumulative
cost in the sense of distances. The important point to note here
is that this problem and ISOP are not each other’s sub-cases,
while the traditional discrete FLP is a special case of any of
these problems.

Looking at the Internet Shopping Optimization Problem
considering price discounts one can notice some similarities
with Total Quantity Discount Problem (TQD) [8]. To show
the similarities and most of all to show distinct differences we
should enclose mathematical formulation of TQD. One can de-
fine G as the set of m goods, indexed by k, and S as the set of n
suppliers, indexed by i. For each good k in G, dk as the amount
of good k to be procured is defined. To each supplier i in S
we associate a sequence of intervals Zi = {0,1, . . . ,maxi}, in-
dexed by j. Furthermore, for each supplier i ∈ S and interval
j ∈ Zi, li j and ui j define the minimum and maximum number
of goods respectively that needs to be ordered from supplier
i to be in interval j. Finally, for each supplier i ∈ S, for each

interval j ∈ Zi and each good k ∈ G, let ci jk be the price for one
item of good k purchased from supplier i in its j-th interval.
Similarities between ISOP with price discounts and TQD prob-
lem can be noticed if we threat products to buy M as goods G
(dk is amount of the same good k) and shops N as suppliers
S. Piecewise discounting function f j for shop j will be associ-
ated with a sequence of intervals Zi for supplier i. Price pi j of
product i from shop j can be shown as price cik for one item of
good k purchased from supplier i. Piecewise function for shop
j applied to a product price f j(pi j) should be treaten as ci jk -
price for one item of good k purchased from supplier i in its
j-th interval. However ISOP includes shipping costs that are
specific to each shops. This feature makes ISOP new enhanced
version of the TQD problem.
It is worth pointing out that the decision version of the TQD
problem is strongly NP-complete. Moreover, no polynomial-
time approximation algorithm with constant worst-case ratio
exists for the TQD problem (unless P = N P). More in-
formation on many variations on TQD (i.e. permissible delay
in payments in [18]), solutions, exact algorithms [19] can be
found in the literature [8, 20, 21].

4. Extended Model
In this section we present a known model of the optimization
problem, Internet Shopping Optimization Problem considering
delivery costs and including price discounts (ISOPwD) [5]. Its
mathematical program can be written as follows:

min
m

∑
i=1

n

∑
j=1

f j(pi jxi j)+
n

∑
j=1

d jy j,

s.t.
n

∑
j=1

xi j = 1, i = 1, . . . ,m,

0 ≤ xi j ≤ y j, i = 1, . . . ,m, j = 1, . . . ,n,

xi j ∈ {0,1}, y j ∈ {0,1}, i = 1, . . . ,m, j = 1, . . . ,n.

were a customer would like to buy products from a given set
M = {1, . . . ,m} in a given set of Internet shops N = {1, . . . ,n}
at the minimum total final price. There are the following given
parameters and decision variables:

d j - delivery price of all products from shop j,
y j - usage indicator for shop j,
pi j - standard price of product i in shop j,
xi j - usage indicator for product i in shop j,
f j(Tj) - piecewise function (discounting) for final price of
all products T bought in shop j.

A piecewise function model is non-linear according to its
original nature and it is why we are using non-linear model
here.

PROPOSITION 1. In [3] ISOP is demonstrated to be part
of NP-Hard problems. The ISOP can be reduced to the basic
ISOPwD problem.

STATEMENT 1. The ISOPwD is NP-Hard in the strong
sense.
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specific to each shops. This feature makes ISOP new enhanced
version of the TQD problem.
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were a customer would like to buy products from a given set
M = {1, . . . ,m} in a given set of Internet shops N = {1, . . . ,n}
at the minimum total final price. There are the following given
parameters and decision variables:

d j - delivery price of all products from shop j,
y j - usage indicator for shop j,
pi j - standard price of product i in shop j,
xi j - usage indicator for product i in shop j,
f j(Tj) - piecewise function (discounting) for final price of
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where a customer wants to buy products from a given set 
M = f1, …, mg in a given set of Internet shops N = f1, …, ng 
at the minimum total final price. There are the following given 
parameters and decision variables:
 dj – delivery price of all products from shop j,
 yj – usage indicator for shop j,
 pij – standard price of product i in shop j,
 xij – usage indicator for product i in shop j,
 f j (Tj) –  piecewise function (discounting) for final price of 
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A piecewise function model is non-linear according to its 
original nature and it is why we are using non-linear model here.

Proposition 1. In [3] ISOP is demonstrated to be part of 
NP- Hard problems. The ISOP can be reduced to the basic 
ISOPwD problem.

Statement 1. The ISOPwD is NP-Hard in the strong sense.

Basic ISOP problem (known as strongly NP-hard) can be 
transformed to the ISOPwD considering the sub-case for 
which all piecewise functions (discounts for each shop n 2 N) 
equals fj(Tj) = Tj. Therefore the extended ISOPwD problem 
is NP-hard in the strong sense.

5. Proposed algorithms

The ISOPwD is strongly NP-hard. Moreover, to our best knowl-
edge it cannot be reduced to one of the known problems. There-
fore, it is apparent right to propose heuristic solution, simple 
efficient greedy algorithms [5, 22] that use local knowledge 
and do not allow any backtracking for efficiency purpose. It 
is worth to notice that the greedy algorithm does not always 
yield optimal solutions. However, it could provide an optimal 
or close to optimal solution using much less resources and time 
than other optimal working algorithms (i.e., full scan).

5.1. Greedy algorithm. In the first heuristic for the ISOPwD, 
denoted as Greedy [9], products are considered in a certain or-
der. The algorithm is run for various product orders and the 
best solution found is presented to the customer. Let us consid-
er that the products are sorted in an ascending order 1, …, m. 
Values of the total delivery for each store are initially set as dj, 
j = f1, …, n. yj is the shipping indicator. The standard price for 
each product i in shop j is set as pij. In iteration i of Greedy, 
product i is selected in its eligible shop j with minimum val-
ue T + fj(pij) + dj, and the corresponding T-value is re-set: 
T = T + fj(pij) + dj. Afterwards, dj is set to 0.
Piecewise function fj(pij) returns value of product i after apply-
ing discount for shop j.

We observed that Greedy demonstrates very good perfor-
mance on the experimental data. However, it can provide a solu-
tion whose value is much worse than the optimum. One can 
consider products and delivery prices in Table 2. The first experi-
mental computation results of Greedy can be found in [5] and [9].

For any product sequence algorithm Greedy selects all prod-
ucts in shop 1, which costs nW ¡ ε, while an optimal solution 
is to select all products in shop 2, which costs W.

5.2. Algorithm with forecasting. Observed weak points of 
Greedy led to the creation of a new, upgraded version. The lo-
cal step choice analysis is more complicated than in the basic 
Greedy. The forecasting method is looking for a step ahead 
[4]. Therefore, technically this algorithm is not a strict greedy 
algorithm. Sometimes it proposes a current solution which is 
not optimal for the current step (local solution) but for a better 
overall solution in hope of providing an optimal global solution.

In order to hedge against the instances similar to that in 
Table 2, we developed another heuristic algorithm, denoted as 
Forecasting. The main idea is to check the situation one step 
ahead (forecasting bad situations). From the first step to the 
penultimate, the algorithm calculates “rating” to pick an eligible 
shop j for product i. Instead for looking for a local optimum it 
looks one step ahead (which prevents a bad case from occur-
ring) and calculates the choosing factor as T + 
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Table 2
Price structure for poor performance of Greedy

prod 1 prod 2 ... prod n delivery

shop 1 W − ε W − ε ... W − ε 0
shop 2 0 0 ... 0 W

Proof. Basic ISOP problem (known as strongly NP-hard) can
be transformed to the ISOPwD considering the sub-case for
which all piecewise functions (discounts for each shop n ∈ N)
equals f j(Tj) = Tj. Therefore the extended ISOPwD problem
is NP-hard in the strong sense.

5. Proposed Algorithms
The ISOPwD is strongly NP-hard. Moreover, to our best
knowledge it cannot be reduced to one of the known prob-
lems. Therefore, it is apparent right to propose heuristic so-
lution, simple efficient greedy algorithms [5, 22] that use local
knowledge and do not allow any backtracking for efficiency
purpose. It is worth to notice that the greedy algorithm does
not always yield optimal solutions. However, it could provide
an optimal or close to optimal solution using much less re-
sources and time than other optimal working algorithms (i.e.,
full scan).

5.1. Greedy algorithm - Greedy. In the first heuristic for the
ISOPwD, denoted as Greedy [9], products are considered in a
certain order. The algorithm is run for various product orders
and the best solution found is presented to the customer. Let
us consider that the products are sorted in an ascending order
1, . . . ,m. Values of the total delivery for each store are initially
set as d j , j = 1, . . . ,n. y j is the shipping indicator. The stan-
dard price for each product i in shop j is set as pi j. In iteration i
of Greedy, product i is selected in its eligible shop j with min-
imum value T + f j(pi j)+d j, and the corresponding T -value is
re-set: T = T + f j(pi j)+d j. Afterwards, d j is set to 0.
Piecewise function f j(pi j) returns value of product i after ap-
plying discount for shop j.

We observed that Greedy demonstrates very good perfor-
mance on the experimental data. However, it can provide a so-
lution whose value is much worse than the optimum. One can
consider products and delivery prices in Table 2. The first ex-
perimental computation results of Greedy can be found in [5]
and [9].

For any product sequence algorithm Greedy selects all prod-
ucts in shop 1, which costs nW − ε , while an optimal solution
is to select all products in shop 2, which costs W .

5.2. Algorithm with forecasting - Forecasting. Observed
weak points of Greedy led to the creation of a new, upgraded
version. The local step choice analysis is more complicated
than in the basic Greedy. The forecasting method is looking
for a step ahead [4]. Therefore, technically this algorithm is
not a strict greedy algorithm. Sometimes it proposes a current
solution which is not optimal for the current step (local solu-
tion) but for a better overall solution in hope of providing an
optimal global solution.

In order to hedge against the instances similar to that in
Table 2, we developed another heuristic algorithm, denoted
as Forecasting. The main idea is to check the situation one
step ahead (forecasting bad situations). From the first step
to the penultimate, the algorithm calculates "rating" to pick
an eligible shop j for product i. Instead for looking for a
local optimum it looks one step ahead (which prevents a bad
case from occurring) and calculates the choosing factor as
Tj +

f j(pi j+pi j+1)+d j
2 for every shop j and picking the one

with the lowest calculated value. In each following step
next product i is taken into account, i = i + 1. T is set as
T = T + f j(pi j)+d j. Afterwards, d j is set to 0.
The last step of the algorithm works in a different way
(forecast could not work beyond the set of products i). The
last product is selected in its eligible shop j with minimum
value T + f j(pi j).

Piecewise function f j(pi j + pi j+1) returns total costs of
products i and i+1 after applying discount for shop j.

5.3. Cellular Processing Algorithm - Cellular. The cellular
processing based algorithm is a new pseudo-parallel optimiza-
tion approach [23]. It includes multiple processing cells that
explore different regions of the search space. Each process-
ing cell can be implemented using population or search based
heuristics or an hybridization of them. The main idea and the
principle of the algorithm is to split a sequential algorithm into
several pseudo-parallel processing (i.e., cell) modules, so that
each cell can explore different regions of the search space. The
main feature of the new approach is that the iterative verifi-
cation of the stagnation conditions prevents wasting time on
unnecessary tasks.

We design an new algorithm based on a pseudo-parallel op-
timization approach introduced by [23]. The new algorithm we
design is a cellular processing approach, which includes mul-
tiple processing cells that helps to explore different regions of
the search optimization space.

The components of the algorithm are a pool of candidate
solutions, generated either by a constructive or a random algo-
rithm and a cell set that is simple, independent, self-contained
and applied to work with the subset of candidate solutions that
were given to solve. This process continues until the cells stall
all solutions in their local optimum. After that, the solutions
return to the pool, and the cells share information with each
other in order to escape from the local optimum and continue
the search for the global optimum.

In this work we generated the candidate solutions at ran-
dom. We designed an Iterated Local Search algorithm (ILS)
as the core of the cells. This choice was made due to the sim-
plicity and high configurability of this structure, which allows
it to be highly scalable and to run in a variety of hardware con-
figurations. Moreover, the ILS algorithm is a trajectory-based
metaheuristic that can be seen as a straight-forward, yet pow-
erful technique for extending simple local search algorithms.

The algorithm starts off by generating an initial solution.
Then, a local search process is applied to the candidate solu-
tion. After that, following an iteration based approach, it seeks
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for every shop j and picking the one with the lowest calculated 
value. In each following step next product i is taken into ac-
count, i = i + 1. T is set as T = T + fj(pij) + dj. Afterwards, dj 
is set to 0.
The last step of the algorithm works in a different way (forecast 
could not work beyond the set of products i). The last product 
is selected in its eligible shop j with minimum value T + fj(pij).

Piecewise function fj( pij + pij+1) returns total costs of prod-
ucts i and i + 1 after applying discount for shop j.

5.3. Cellular processing algorithm. The cellular processing 
based algorithm is a new pseudo-parallel optimization ap-
proach [23]. It includes multiple processing cells that explore 
different regions of the search space. Each processing cell can 
be implemented using population or search based heuristics 
or an hybridization of them. The main idea and the principle 
of the algorithm is to split a sequential algorithm into several 
pseudo-parallel processing (i.e., cell) modules, so that each cell 
can explore different regions of the search space. The main 
feature of the new approach is that the iterative verification 
of the stagnation conditions prevents wasting time on unnec-
essary tasks.

We design an new algorithm based on a pseudo-parallel op-
timization approach introduced by [23]. The new algorithm we 
design is a cellular processing approach, which includes mul-
tiple processing cells that helps to explore different regions of 
the search optimization space.

The components of the algorithm are a pool of candidate 
solutions, generated either by a constructive or a random algo-
rithm and a cell set that is simple, independent, self-contained 
and applied to work with the subset of candidate solutions that 
were given to solve. This process continues until the cells stall 
all solutions in their local optimum. After that, the solutions 
return to the pool, and the cells share information with each 
other in order to escape from the local optimum and continue 
the search for the global optimum.

In this work we generated the candidate solutions at random. 
We designed an iterated local search algorithm (ILS) as the core 
of the cells. This choice was made due to the simplicity and 
high configurability of this structure, which allows it to be high-
ly scalable and to run in a variety of hardware configurations. 

Table 2 
Price structure for poor performance of Greedy

prod 1 prod 2 … prod n delivery

shop 1 W – ε W – ε … W – ε 0

shop 2 0 0 … 0 W
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Moreover, the ILS algorithm is a trajectory-based metaheuristic 
that can be seen as a straight-forward, yet powerful technique 
for extending simple local search algorithms.

The algorithm starts off by generating an initial solution. 
Then, a local search process is applied to the candidate solu-
tion. After that, following an iteration based approach, it seeks 
to improve the solutions from one iteration to the next. At each 
iteration, a perturbation of the obtained local optimum is carried 
out. The perturbation mechanism introduces a modification to 
a given candidate solution to allow the search process to escape 
from a local optimum. A local search is applied to the perturbed 
solution. The new solution is then evaluated and accepted as 
the new current solution under some conditions. The algorithm 
finishes when the termination condition is met.

The proposed local search algorithm comprises the follow-
ing methods:
● The criticalElements obtains a list of elements that may be 

promising in finding a better search region. This case com-
prises products that are more expensive and are bought only 
in one store, so the heuristic favors elements that are cheaper 
and are bought in the same store.

● The evaluateChange method explores the entire neighbor-
hood of search to find the permutation that improves the 
current solution, but without perturbing it, and returns the 
store in which it is more convenient to purchase the product 
under consideration.

● The makeChange makes the proposed change given by eval-
uateChange.

● Once the change is performed, the applyDiscount method 
applies the discounts on the price of the products (piecewise 
function).
The number of cells used in this configuration was estab-

lished to five, each one starting from a different region of the 
search space and performing the process described beforehand. 
The communication, once all were stagnated, was done by com-
paring the quality of the solutions obtained by each processing 
cell.

The stagnation was determined by the number of consec-
utive iterations without improvement, that in the case of each 
cell was established to ten iterations and for the whole process 
to five iterations without improvement.

Coded algorithm was carefully designed and build especial-
ly to solve ISOPwD problem taking into account its specific 
and original nature. The algorithm is original and created from 
the basis especially for this purpose.

It is natural to try to relate Cellular to Hyper heuristic. How-
ever, it is worth pointing out that Cellular differs from the Hyper 
heuristic approach in that each processing cell has complete 
knowledge on the problem that is being solved, as opposed to 
the Hyper heuristic, where exists a domain barrier among the 
controller and the low level heuristics. Another main difference 
resides in that the processing cells are adapted and tailored 
to the problem that is being solved, while the Hyper heuristic 
depends on generic low level heuristics that can be applied to 
a greater variety of optimization problems, according to Burke 
et al. [24].

5.4. Minimum-minimum algorithm. The min-min algorithm 
is commonly and widely used in the context of scheduling in-
dependent tasks in distributed computing to minimize the total 
completion time of the tasks [25, 26]. One of the main advan-
tages of this approach is that in general is capable to obtain good 
quality solutions with a relatively small computational cost, but 
as it schedules those tasks or processes with minimum cost first, 
it may result in an imbalanced solution [27]. [28] described 
the process of the heuristic min-min approach. In this paper 
we extended min-min to ISOPwD for the selection of a list of 
products in a set of web-stores. The extended version is called 
MinMin in this paper.

The process begins with the search of the product in the 
list of unassigned products N, which minimizes the total cost 
TC in the shopping cart among the different stores M, given 
the cost of the product, Cij plus delivery cost, Di. In the case 
of a tie, the product with the lower delivery cost is selected, 
and if both stores have the same delivery cost, the product is 
chosen randomly.

Once assigned, the total cost of the shopping cart is updated 
with the selected product, and it is removed from the unassigned 
product list N. The process continues until the unassigned prod-
uct list is empty.

5.5. Branch and bound algorithm. To calculate the optimal 
solution, we designed a branch and bound algorithm [29].

The branch and bound (BB) algorithm starts off by calcu-
lating an upper bound (UB) employing the solution given by 

Fig. 1. Algorithm Cellular-ILS
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the Cell Processing Algorithm and proceeds to branch the first 
level of the search tree in the stack. Subsequently, the algorithm 
pops the top element of the stack and evaluates the objective 
value it would have if it were part of the current solution. If 
the partial solution exceeds the limit given by the upper bound 
(UB), the current branch is fathomed. Otherwise, if it were not 
a leaf of the tree, the algorithm would pile up the following 
elements within the stack. If it were a leaf, it would mean that 
the current solution is better than the best global solution found 
so far. Consequently it would update the upper bound with the 
new value found.

This process continues as long as there are elements in the 
stack, which means that the whole search tree has been ex-
plored. Founded upper bound is now considered as the opti-
mal solution of the instance being evaluated. We consider it 
as a B&B model, even if it was implemented by ourselves, as 
it follows the procedure described in the literature. Generating 
the search tree and stopping further exploration where it’s not 
possible to find a better solutions on a branch.

6. Computational experiments results

Computational experiments were performed and divided into 
two groups (due to the computational complexity time) – a set 
of experiments including BB exact algorithm and a set of exper-
iments without optimal solution as a comparison of all heuris-
tics to evaluate scalability issues by increasing instances’ size.

All algorithms were implemented in the PHP programming 
language in its 5.2 version. The aim of using PHP was to easy 
embed the algorithms in a website – to work in a conditions that 
are similar to its future final version.

The experiments were carried out in an Apple MacBook 
Pro, version 8.1 with an Intel processor running at 2.3 GHz, 
two physical cores and two virtual for each one and 4 GB 
DDR3 main memory at 1333 MHz. The experimentations were 
made on a virtual machine running GNU/Linux Mint 11 on 
a Mac OS X 10.7 host with two virtual cores assigned and 2 GB 
of main memory.

6.1. World working model and instances generator. A chal-
lenging step in experimental research was to create a model, 
which would be as close to real Internet shopping conditions 
as possible. An experiment with real world data would be the 
next step in research, which involves much more dialog with 
the business community. We studied the relationship between 
the competitive structure, advertising, prices and price disper-
sion over Internet stores. As a group of representative products 
to be taken into account in our computational experiment we 
chose books, because of their wide choice in web-stores and 
frequency of purchase through this kind of shopping channel. 
We used some information from [30]. It focuses mainly on elec-
tronic bookstores model definition, prices, acceptance factor, 
retailer brand [31] and, what is important for the optimization 
problem model definition, price dispersion. Moreover, we ana-
lyzed many Internet stores (i.e. Amazon, BarnesandNoble.com, 
Borders.com, Buy.com, Booksamillion and top sellers among 

Internet bookstores in Poland such as empik.com and merlin. pl) 
to create our own model with instances generator as close to 
reality as possible.

The working model was prepared as follows. In the 
computational experiments we assume that n 2 f20, 40g, 
m 2 f2,  3, …, 10, 15, …, 100g. For each pair (n,  m), 100 in-
stances were generated. In each instance, the following values 
were randomly generated for all i and j in the corresponding 
ranges. Delivery price: dj 2 f5,  10,  15,  20,  25,  30g, publish-
er’s recommended price of book i: ri 2 f5,  10,  15,  20,  25g, and 
price of book i in bookstore j: pij 2 [aij,  bij], where aij ¸ 0.69rj, 
bij ∙ 1.47rj, and the structure of intervals [aij,  bij] is prepared 
as follows:
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bound with the new value found.
This process continues as long as there are elements in the

stack, which means that the whole search tree has been ex-
plored. Founded upper bound is now considered as the optimal
solution of the instance being evaluated.
We consider it as a B&B model, even if it was implemented
by ourselves, as it follows the procedure described in the lit-
erature. Generating the search tree and stopping further ex-
ploration where it’s not possible to find a better solutions on a
branch.

6. Computational experiments results
Computational experiments were performed and divided into
two groups (due to the computational complexity time) – a
set of experiments including BB exact algorithm and a set of
experiments without optimal solution as a comparison of all
heuristics to evaluate scalability issues by increasing instances’
size.

All algorithms were implemented in the PHP programming
language in its 5.2 version. The aim of using PHP was to easy
embed the algorithms in a website – to work in a conditions
that are similar to its future final version.

The experiments were carried out in an Apple MacBook Pro,
version 8.1 with an Intel processor running at 2.3 GHz, two
physical cores and two virtual for each one and 4 GB DDR3
main memory at 1333 MHz. The experimentations were made
on a virtual machine running GNU/Linux Mint 11 on a Mac
OS X 10.7 host with two virtual cores assigned and 2 GB of
main memory.

6.1. World working model and instances generator. A
challenging step in experimental research was to create a
model, which would be as close to real Internet shopping con-
ditions as possible. An experiment with real world data would
be the next step in research, which involves much more dialog
with the business community. We studied the relationship be-
tween the competitive structure, advertising, prices and price
dispersion over Internet stores. As a group of representative
products to be taken into account in our computational exper-
iment we chose books, because of their wide choice in web-
stores and frequency of purchase through this kind of shop-
ping channel. We used some information from [30]. It focuses
mainly on electronic bookstores model definition, prices, ac-
ceptance factor, retailer brand [31] and, what is important for
the optimization problem model definition, price dispersion.
Moreover, we analyzed many Internet stores (i.e. Amazon,
BarnesandNoble.com, Borders.com, Buy.com, Booksamillion
and top sellers among Internet bookstores in Poland such as
empik.com and merlin.pl) to create our own model with in-
stances generator as close to reality as possible.

The working model was prepared as follows. In the com-
putational experiments we assume that n ∈ {20,40}, m ∈
{2,3, . . . ,10,15, . . . ,100}. For each pair (n,m), 100 instances
were generated. In each instance, the following values were
randomly generated for all i and j in the corresponding ranges.
Delivery price: d j ∈ {5,10,15,20,25,30}, publisher’s recom-

mended price of book i: ri ∈ {5,10,15,20,25}, and price of
book i in bookstore j: pi j ∈ [ai j,bi j], where ai j ≥ 0.69r j,
bi j ≤ 1.47r j, and the structure of intervals [ai j,bi j] is prepared
as follows:
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minimum+ (median−minimum)
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minimum+ (median−minimum)
1.33
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median
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1.33
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where minimum = 0.69r and maximum = 1.47r.

Based on real world observation the following discounting
function was proposed.

f (x) =




x if x ≤ 25,
0.95x if 25 < x ≤ 50,
0.90x if 50 < x ≤ 100,
0.85x if 100 < x ≤ 200,
0.80x if 200 < x.

This kind of advertisement is well-known and very often
used by stores / sellers. The more money you spend the more
discount you can achieve.

6.2. A set of experiments including Branch and Bound al-
gorithm. The first group of experiments is the one in which
the optimal solutions obtained by the exact BB algorithm were
compared to two state-of-the-art heuristic algorithms: Greedy,
Forecasting, and two newly developed algorithms: Cellular
and MinMin (for the ISOPwD). In these examples n ∈ {20},
m ∈ {2,3,4,5,6,7,8,9,10}, and discounts follow the proposed
piecewise discounting function. For each pair (n,m), 100 in-
stances were generated using the information in subsection 6.1.
The number of instances with optimal solutions computed by
BB is equal to 900.

The algorithms were compared using three metrics: an ap-
proximation factor, the run time spent by each heuristic to com-
pute a solution, and the dispersion analysis based on the stan-
dard deviation. The approximation factor of a heuristic is de-
fined as ρ = F(X)

F(X)∗ , where F(X) represents the solution found
by a heuristic and F(X)∗ denotes the optimal solution.

Figure 2 depicts the average solution of the aggregate values
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where minimum = 0.69r and maximum = 1.47r.

Based on real world observation the following discounting 
function was proposed.
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bound with the new value found.
This process continues as long as there are elements in the

stack, which means that the whole search tree has been ex-
plored. Founded upper bound is now considered as the optimal
solution of the instance being evaluated.
We consider it as a B&B model, even if it was implemented
by ourselves, as it follows the procedure described in the lit-
erature. Generating the search tree and stopping further ex-
ploration where it’s not possible to find a better solutions on a
branch.

6. Computational experiments results
Computational experiments were performed and divided into
two groups (due to the computational complexity time) – a
set of experiments including BB exact algorithm and a set of
experiments without optimal solution as a comparison of all
heuristics to evaluate scalability issues by increasing instances’
size.

All algorithms were implemented in the PHP programming
language in its 5.2 version. The aim of using PHP was to easy
embed the algorithms in a website – to work in a conditions
that are similar to its future final version.

The experiments were carried out in an Apple MacBook Pro,
version 8.1 with an Intel processor running at 2.3 GHz, two
physical cores and two virtual for each one and 4 GB DDR3
main memory at 1333 MHz. The experimentations were made
on a virtual machine running GNU/Linux Mint 11 on a Mac
OS X 10.7 host with two virtual cores assigned and 2 GB of
main memory.

6.1. World working model and instances generator. A
challenging step in experimental research was to create a
model, which would be as close to real Internet shopping con-
ditions as possible. An experiment with real world data would
be the next step in research, which involves much more dialog
with the business community. We studied the relationship be-
tween the competitive structure, advertising, prices and price
dispersion over Internet stores. As a group of representative
products to be taken into account in our computational exper-
iment we chose books, because of their wide choice in web-
stores and frequency of purchase through this kind of shop-
ping channel. We used some information from [30]. It focuses
mainly on electronic bookstores model definition, prices, ac-
ceptance factor, retailer brand [31] and, what is important for
the optimization problem model definition, price dispersion.
Moreover, we analyzed many Internet stores (i.e. Amazon,
BarnesandNoble.com, Borders.com, Buy.com, Booksamillion
and top sellers among Internet bookstores in Poland such as
empik.com and merlin.pl) to create our own model with in-
stances generator as close to reality as possible.

The working model was prepared as follows. In the com-
putational experiments we assume that n ∈ {20,40}, m ∈
{2,3, . . . ,10,15, . . . ,100}. For each pair (n,m), 100 instances
were generated. In each instance, the following values were
randomly generated for all i and j in the corresponding ranges.
Delivery price: d j ∈ {5,10,15,20,25,30}, publisher’s recom-

mended price of book i: ri ∈ {5,10,15,20,25}, and price of
book i in bookstore j: pi j ∈ [ai j,bi j], where ai j ≥ 0.69r j,
bi j ≤ 1.47r j, and the structure of intervals [ai j,bi j] is prepared
as follows:

[32%]
minimum

minimum+ (median−minimum)
4

[9%]

minimum+ (median−minimum)
2

[9%]

minimum+ (median−minimum)
1.33

[8%]
median

[13%]

median+ (maximum−median)
4

[6%]

median+ (maximum−median)
2

[11%]

median+ (maximum−median)
1.33

[12%]
maximum

where minimum = 0.69r and maximum = 1.47r.

Based on real world observation the following discounting
function was proposed.

f (x) =





x if x ≤ 25,
0.95x if 25 < x ≤ 50,
0.90x if 50 < x ≤ 100,
0.85x if 100 < x ≤ 200,
0.80x if 200 < x.

This kind of advertisement is well-known and very often
used by stores / sellers. The more money you spend the more
discount you can achieve.

6.2. A set of experiments including Branch and Bound al-
gorithm. The first group of experiments is the one in which
the optimal solutions obtained by the exact BB algorithm were
compared to two state-of-the-art heuristic algorithms: Greedy,
Forecasting, and two newly developed algorithms: Cellular
and MinMin (for the ISOPwD). In these examples n ∈ {20},
m ∈ {2,3,4,5,6,7,8,9,10}, and discounts follow the proposed
piecewise discounting function. For each pair (n,m), 100 in-
stances were generated using the information in subsection 6.1.
The number of instances with optimal solutions computed by
BB is equal to 900.

The algorithms were compared using three metrics: an ap-
proximation factor, the run time spent by each heuristic to com-
pute a solution, and the dispersion analysis based on the stan-
dard deviation. The approximation factor of a heuristic is de-
fined as ρ = F(X)

F(X)∗ , where F(X) represents the solution found
by a heuristic and F(X)∗ denotes the optimal solution.

Figure 2 depicts the average solution of the aggregate values
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This kind of advertisement is well-known and very often 
used by sellers. The more money is spent, the more discount 
one can achieve.

6.2. A set of experiments including branch and bound al-
gorithm. The first group of experiments is the one in which 
the optimal solutions obtained by the exact BB algorithm were 
compared to two state-of-the-art heuristic algorithms: Greedy, 
Forecasting, and two newly developed algorithms: Cellular 
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and MinMin (for the ISOPwD). In these examples n 2 f20g, 
m 2 f2, 3, 4, 5, 6, 7, 8, 9, 10g, and discounts follow the proposed 
piecewise discounting function. For each pair (n, m), 100 in-
stances were generated using the information in subsection 
6.1. The number of instances with optimal solutions computed 
by BB is equal to 900.

The algorithms were compared using three metrics: an 
approximation factor, the run time spent by each heuristic to 
compute a solution, and the dispersion analysis based on the 
standard deviation. The approximation factor of a heuristic is 
defined as ρ = 
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bound with the new value found.
This process continues as long as there are elements in the

stack, which means that the whole search tree has been ex-
plored. Founded upper bound is now considered as the optimal
solution of the instance being evaluated.
We consider it as a B&B model, even if it was implemented
by ourselves, as it follows the procedure described in the lit-
erature. Generating the search tree and stopping further ex-
ploration where it’s not possible to find a better solutions on a
branch.

6. Computational experiments results
Computational experiments were performed and divided into
two groups (due to the computational complexity time) – a
set of experiments including BB exact algorithm and a set of
experiments without optimal solution as a comparison of all
heuristics to evaluate scalability issues by increasing instances’
size.

All algorithms were implemented in the PHP programming
language in its 5.2 version. The aim of using PHP was to easy
embed the algorithms in a website – to work in a conditions
that are similar to its future final version.

The experiments were carried out in an Apple MacBook Pro,
version 8.1 with an Intel processor running at 2.3 GHz, two
physical cores and two virtual for each one and 4 GB DDR3
main memory at 1333 MHz. The experimentations were made
on a virtual machine running GNU/Linux Mint 11 on a Mac
OS X 10.7 host with two virtual cores assigned and 2 GB of
main memory.

6.1. World working model and instances generator. A
challenging step in experimental research was to create a
model, which would be as close to real Internet shopping con-
ditions as possible. An experiment with real world data would
be the next step in research, which involves much more dialog
with the business community. We studied the relationship be-
tween the competitive structure, advertising, prices and price
dispersion over Internet stores. As a group of representative
products to be taken into account in our computational exper-
iment we chose books, because of their wide choice in web-
stores and frequency of purchase through this kind of shop-
ping channel. We used some information from [30]. It focuses
mainly on electronic bookstores model definition, prices, ac-
ceptance factor, retailer brand [31] and, what is important for
the optimization problem model definition, price dispersion.
Moreover, we analyzed many Internet stores (i.e. Amazon,
BarnesandNoble.com, Borders.com, Buy.com, Booksamillion
and top sellers among Internet bookstores in Poland such as
empik.com and merlin.pl) to create our own model with in-
stances generator as close to reality as possible.

The working model was prepared as follows. In the com-
putational experiments we assume that n ∈ {20,40}, m ∈
{2,3, . . . ,10,15, . . . ,100}. For each pair (n,m), 100 instances
were generated. In each instance, the following values were
randomly generated for all i and j in the corresponding ranges.
Delivery price: d j ∈ {5,10,15,20,25,30}, publisher’s recom-

mended price of book i: ri ∈ {5,10,15,20,25}, and price of
book i in bookstore j: pi j ∈ [ai j,bi j], where ai j ≥ 0.69r j,
bi j ≤ 1.47r j, and the structure of intervals [ai j,bi j] is prepared
as follows:

[32%]
minimum
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2
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1.33
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4
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2
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1.33

[12%]
maximum

where minimum = 0.69r and maximum = 1.47r.

Based on real world observation the following discounting
function was proposed.

f (x) =




x if x ≤ 25,
0.95x if 25 < x ≤ 50,
0.90x if 50 < x ≤ 100,
0.85x if 100 < x ≤ 200,
0.80x if 200 < x.

This kind of advertisement is well-known and very often
used by stores / sellers. The more money you spend the more
discount you can achieve.

6.2. A set of experiments including Branch and Bound al-
gorithm. The first group of experiments is the one in which
the optimal solutions obtained by the exact BB algorithm were
compared to two state-of-the-art heuristic algorithms: Greedy,
Forecasting, and two newly developed algorithms: Cellular
and MinMin (for the ISOPwD). In these examples n ∈ {20},
m ∈ {2,3,4,5,6,7,8,9,10}, and discounts follow the proposed
piecewise discounting function. For each pair (n,m), 100 in-
stances were generated using the information in subsection 6.1.
The number of instances with optimal solutions computed by
BB is equal to 900.

The algorithms were compared using three metrics: an ap-
proximation factor, the run time spent by each heuristic to com-
pute a solution, and the dispersion analysis based on the stan-
dard deviation. The approximation factor of a heuristic is de-
fined as ρ = F(X)

F(X)∗ , where F(X) represents the solution found
by a heuristic and F(X)∗ denotes the optimal solution.

Figure 2 depicts the average solution of the aggregate values
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, where F(X) represents the solution found 
by a heuristic and F(X)¤ denotes the optimal solution.

Figure 2 depicts the average solution of the aggregate values 
of the approximation factor.

rithms. However, the algorithm is quite stable in quality, there-
fore for a bigger number of products it provides better solutions 
than Greedy and Forecasting. The algorithm was able to find 
the optimal solution of 20% of the instances.

If one is looking solely for the quality of solutions the un-
disputed leader among algorithms is Cellular. Using this algo-
rithm the customer is able to save 5.88% more of the total cost 
than using MinMin, 6.3% and 6.64% more than Greedy and 
Forecasting, respectively.

The performance of Cellular is as expected given the search 
iterative process and the iterative verification of the stagnation 
conditions to escape from local optimal solutions different than 
the constructive procedure of the rest of the developed algo-
rithms.

Figure 3 shows the results considering dispersion (includ-
ing the optimal solution). Each point represents the standard 
deviation value (deviation around optimum value) from 100 
computational tests for 20 shops, where every value for each 
test is presented as correlation of the result to the optimum 
(
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Fig. 2. Algorithm results comparison - experiment with 20 shops (in-
cluding the optimal solution). The approximation factor is ρ =

F(X)
F(X)∗

,
where F(X) represents the solution found by a heuristic and F(X)∗

denotes the optimal solution.

Among all heuristics, Cellular provides the best quality of
solutions (closest to the optimum), regardless the size of the
instances. In the worst case, the solution proposed by this al-
gorithm was merely 1.47% more expensive than the cheapest
one. For many instances Cellular algorithm computes the opti-
mal solution. Cellular computed the optimal solution for 62%
of the instances. It is worth noting that the algorithm is very
stable as regards to the quality of solutions (for most cases the
solution is between 1.24% - 1.47% worse than optimum).
Both Greedy and Forecasting algorithms provide similar qual-
ity of solutions (for a lower number of products m, the latter
was better and for a higher number of products m > 5 the for-
mer outperformed Forecasting). Moreover, it is easily notice-
able that the quality of solution degrades with the increasing
number of products m. Greedy was able to find the optimal
solution for 6% of the instances and Forecasting computed the
optimal solutions for 7% of the instances.
The last heuristic algorithm - MinMin provides the worst so-
lutions for a lower number of products regarding the rest of
algorithms. However, the algorithm is quite stable in quality,
therefore for a bigger number of products it provides better so-
lutions than Greedy and Forecasting. The algorithm was able
to find the optimal solution of 20% of the instances.

If one is looking solely for the quality of solutions the undis-
puted leader among algorithms is Cellular. Using this algo-
rithm the customer is able to save 5.88% more of the total cost
than using MinMin, 6.3% and 6.64% more than Greedy and
Forecasting, respectively.

The performance of Cellular is as expected given the search
iterative process and the iterative verification of the stagnation
conditions to escape from local optimal solutions different than
the constructive procedure of the rest of the developed algo-
rithms.

Figure 3 shows the results considering dispersion (including
the optimal solution). Each point represents the standard devi-
ation value (deviation around optimum value) from 100 com-

putational tests for 20 shops, where every value for each test
is presented as correlation of the result to the optimum ( Greedy

BB ,
Forecasting

BB , Cellular
BB , MinMin

BB ). Higher standard deviation means
more unstable work (big difference in distance from the opti-
mal solution) over 100 tests from a given instance (sometimes
optimum or close to, sometimes quite far from it). As a refer-
ence value the BB algorithm results were used, as it computes
the exact solution. In each cell the standard deviation value is
presented for the same instance of n shops and m products for
100 computational tests. It can provide us with very useful in-
formation on the stability of the algorithms’ results or the lack
thereof.
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Fig. 3. Algorithm standard deviation chart - experiment with 20 shops
(including the optimal solution).

Table 3 provides more detailed information which is repre-
sented by the coefficient of variation (CV) normalized mea-
sure (percentage value). Each cell represents the coefficient
of variation (CV) normalized measure (deviation around opti-
mum value) from 100 computational tests for 20 shops where
every value for each test is presented as a correlation of the
result to the optimum. A higher CV value means more unsta-
ble work (big difference in distance from the optimal solution)
over 100 test from a given instance (sometimes optimum or
close to, sometimes quite far from it). We used the results
of the BB algorithm as a reference value. In each cell the CV
value is presented for the same instance of n shops and m prod-
ucts for 100 computational tests.

An important factor to consider in the context of online
shopping is the run time needed by any algorithm to compute
a solution. Figure 4 displays the results regarding the compar-
ison of algorithms run time in microseconds [ms] (including
the optimal solution). Each cell represents the average value
from 100 computational tests for 20 shops.

For a low number of products (m ≤ 5) MinMin is the fastest
algorithm. It can be observed that when the number of prod-
ucts is bigger than five (m > 5), Greedy outperforms the rest
of algorithms. Differences between all algorithms are very sig-
nificant.

Run time execution for BB grows exponentially and it was
impossible to prepare experiments for a bigger number of
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Fig. 2. Algorithm results comparison - experiment with 20 shops (in-
cluding the optimal solution). The approximation factor is ρ =

F(X)
F(X)∗

,
where F(X) represents the solution found by a heuristic and F(X)∗

denotes the optimal solution.

Among all heuristics, Cellular provides the best quality of
solutions (closest to the optimum), regardless the size of the
instances. In the worst case, the solution proposed by this al-
gorithm was merely 1.47% more expensive than the cheapest
one. For many instances Cellular algorithm computes the opti-
mal solution. Cellular computed the optimal solution for 62%
of the instances. It is worth noting that the algorithm is very
stable as regards to the quality of solutions (for most cases the
solution is between 1.24% - 1.47% worse than optimum).
Both Greedy and Forecasting algorithms provide similar qual-
ity of solutions (for a lower number of products m, the latter
was better and for a higher number of products m > 5 the for-
mer outperformed Forecasting). Moreover, it is easily notice-
able that the quality of solution degrades with the increasing
number of products m. Greedy was able to find the optimal
solution for 6% of the instances and Forecasting computed the
optimal solutions for 7% of the instances.
The last heuristic algorithm - MinMin provides the worst so-
lutions for a lower number of products regarding the rest of
algorithms. However, the algorithm is quite stable in quality,
therefore for a bigger number of products it provides better so-
lutions than Greedy and Forecasting. The algorithm was able
to find the optimal solution of 20% of the instances.

If one is looking solely for the quality of solutions the undis-
puted leader among algorithms is Cellular. Using this algo-
rithm the customer is able to save 5.88% more of the total cost
than using MinMin, 6.3% and 6.64% more than Greedy and
Forecasting, respectively.

The performance of Cellular is as expected given the search
iterative process and the iterative verification of the stagnation
conditions to escape from local optimal solutions different than
the constructive procedure of the rest of the developed algo-
rithms.

Figure 3 shows the results considering dispersion (including
the optimal solution). Each point represents the standard devi-
ation value (deviation around optimum value) from 100 com-

putational tests for 20 shops, where every value for each test
is presented as correlation of the result to the optimum ( Greedy

BB ,
Forecasting

BB , Cellular
BB , MinMin

BB ). Higher standard deviation means
more unstable work (big difference in distance from the opti-
mal solution) over 100 tests from a given instance (sometimes
optimum or close to, sometimes quite far from it). As a refer-
ence value the BB algorithm results were used, as it computes
the exact solution. In each cell the standard deviation value is
presented for the same instance of n shops and m products for
100 computational tests. It can provide us with very useful in-
formation on the stability of the algorithms’ results or the lack
thereof.
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(including the optimal solution).

Table 3 provides more detailed information which is repre-
sented by the coefficient of variation (CV) normalized mea-
sure (percentage value). Each cell represents the coefficient
of variation (CV) normalized measure (deviation around opti-
mum value) from 100 computational tests for 20 shops where
every value for each test is presented as a correlation of the
result to the optimum. A higher CV value means more unsta-
ble work (big difference in distance from the optimal solution)
over 100 test from a given instance (sometimes optimum or
close to, sometimes quite far from it). We used the results
of the BB algorithm as a reference value. In each cell the CV
value is presented for the same instance of n shops and m prod-
ucts for 100 computational tests.

An important factor to consider in the context of online
shopping is the run time needed by any algorithm to compute
a solution. Figure 4 displays the results regarding the compar-
ison of algorithms run time in microseconds [ms] (including
the optimal solution). Each cell represents the average value
from 100 computational tests for 20 shops.

For a low number of products (m ≤ 5) MinMin is the fastest
algorithm. It can be observed that when the number of prod-
ucts is bigger than five (m > 5), Greedy outperforms the rest
of algorithms. Differences between all algorithms are very sig-
nificant.

Run time execution for BB grows exponentially and it was
impossible to prepare experiments for a bigger number of
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). Higher standard deviation 
means more unstable work (big difference in distance from 
the optimal solution) over 100 tests from a given instance 
(sometimes optimum or close to, sometimes quite far from 
it). As a reference value the BB algorithm results were used, 
as it computes the exact solution. In each cell the standard 
deviation value is presented for the same instance of n shops 
and m products for 100 computational tests. It can provide us 
with very useful information on the stability of the algorithms’ 
results or the lack thereof.

Table 3 provides more detailed information which is rep-
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sure (percentage value). Each cell represents the coefficient of 
variation (CV) normalized measure (deviation around optimum 
value) from 100 computational tests for 20 shops where every 
value for each test is presented as a correlation of the result to 
the optimum. A higher CV value means more unstable work 
(big difference in distance from the optimal solution) over 100 
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bound with the new value found.
This process continues as long as there are elements in the

stack, which means that the whole search tree has been ex-
plored. Founded upper bound is now considered as the optimal
solution of the instance being evaluated.
We consider it as a B&B model, even if it was implemented
by ourselves, as it follows the procedure described in the lit-
erature. Generating the search tree and stopping further ex-
ploration where it’s not possible to find a better solutions on a
branch.

6. Computational experiments results
Computational experiments were performed and divided into
two groups (due to the computational complexity time) – a
set of experiments including BB exact algorithm and a set of
experiments without optimal solution as a comparison of all
heuristics to evaluate scalability issues by increasing instances’
size.

All algorithms were implemented in the PHP programming
language in its 5.2 version. The aim of using PHP was to easy
embed the algorithms in a website – to work in a conditions
that are similar to its future final version.

The experiments were carried out in an Apple MacBook Pro,
version 8.1 with an Intel processor running at 2.3 GHz, two
physical cores and two virtual for each one and 4 GB DDR3
main memory at 1333 MHz. The experimentations were made
on a virtual machine running GNU/Linux Mint 11 on a Mac
OS X 10.7 host with two virtual cores assigned and 2 GB of
main memory.

6.1. World working model and instances generator. A
challenging step in experimental research was to create a
model, which would be as close to real Internet shopping con-
ditions as possible. An experiment with real world data would
be the next step in research, which involves much more dialog
with the business community. We studied the relationship be-
tween the competitive structure, advertising, prices and price
dispersion over Internet stores. As a group of representative
products to be taken into account in our computational exper-
iment we chose books, because of their wide choice in web-
stores and frequency of purchase through this kind of shop-
ping channel. We used some information from [30]. It focuses
mainly on electronic bookstores model definition, prices, ac-
ceptance factor, retailer brand [31] and, what is important for
the optimization problem model definition, price dispersion.
Moreover, we analyzed many Internet stores (i.e. Amazon,
BarnesandNoble.com, Borders.com, Buy.com, Booksamillion
and top sellers among Internet bookstores in Poland such as
empik.com and merlin.pl) to create our own model with in-
stances generator as close to reality as possible.

The working model was prepared as follows. In the com-
putational experiments we assume that n ∈ {20,40}, m ∈
{2,3, . . . ,10,15, . . . ,100}. For each pair (n,m), 100 instances
were generated. In each instance, the following values were
randomly generated for all i and j in the corresponding ranges.
Delivery price: d j ∈ {5,10,15,20,25,30}, publisher’s recom-

mended price of book i: ri ∈ {5,10,15,20,25}, and price of
book i in bookstore j: pi j ∈ [ai j,bi j], where ai j ≥ 0.69r j,
bi j ≤ 1.47r j, and the structure of intervals [ai j,bi j] is prepared
as follows:
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4
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2
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1.33
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4
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2
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median+ (maximum−median)
1.33

[12%]
maximum

where minimum = 0.69r and maximum = 1.47r.

Based on real world observation the following discounting
function was proposed.

f (x) =




x if x ≤ 25,
0.95x if 25 < x ≤ 50,
0.90x if 50 < x ≤ 100,
0.85x if 100 < x ≤ 200,
0.80x if 200 < x.

This kind of advertisement is well-known and very often
used by stores / sellers. The more money you spend the more
discount you can achieve.

6.2. A set of experiments including Branch and Bound al-
gorithm. The first group of experiments is the one in which
the optimal solutions obtained by the exact BB algorithm were
compared to two state-of-the-art heuristic algorithms: Greedy,
Forecasting, and two newly developed algorithms: Cellular
and MinMin (for the ISOPwD). In these examples n ∈ {20},
m ∈ {2,3,4,5,6,7,8,9,10}, and discounts follow the proposed
piecewise discounting function. For each pair (n,m), 100 in-
stances were generated using the information in subsection 6.1.
The number of instances with optimal solutions computed by
BB is equal to 900.

The algorithms were compared using three metrics: an ap-
proximation factor, the run time spent by each heuristic to com-
pute a solution, and the dispersion analysis based on the stan-
dard deviation. The approximation factor of a heuristic is de-
fined as ρ = F(X)

F(X)∗ , where F(X) represents the solution found
by a heuristic and F(X)∗ denotes the optimal solution.

Figure 2 depicts the average solution of the aggregate values
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where F(X) represents the solution found by a heuristic and F(X)¤ 

denotes the optimal solution.
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Among all heuristics, Cellular provides the best quality of 
solutions (closest to the optimum), regardless the size of the 
instances. In the worst case, the solution proposed by this algo-
rithm was merely 1.47% more expensive than the cheapest one. 
For many instances Cellular algorithm computes the optimal 
solution. Cellular computed the optimal solution for 62% of the 
instances. It is worth noting that the algorithm is very stable as 
regards to the quality of solutions (for most cases the solution 
is between 1.24% – 1.47% worse than optimum).
Both Greedy and Forecasting algorithms provide similar quality 
of solutions (for a lower number of products m, the latter was 
better and for a higher number of products m > 5 the former 
outperformed Forecasting). Moreover, it is easily noticeable that 
the quality of solution degrades with the increasing number of 
products m. Greedy was able to find the optimal solution for 6% 
of the instances and Forecasting computed the optimal solutions 
for 7% of the instances.
The last heuristic algorithm – MinMin provides the worst solu-
tions for a lower number of products regarding the rest of algo-

Fig. 3. Algorithm standard deviation chart – experiment with 20 shops 
(including the optimal solution)
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test from a given instance (sometimes optimum or close to, 
sometimes quite far from it). We used the results of the BB 
algorithm as a reference value. In each cell the CV value is 
presented for the same instance of n shops and m products for 
100 computational tests.

An important factor to consider in the context of online 
shopping is the run time needed by any algorithm to compute 
a solution. Figure 4 displays the results regarding the compari-
son of algorithms run time in microseconds [ms] (including the 
optimal solution). Each cell represents the average value from 
100 computational tests for 20 shops.

For a low number of products (m ∙ 5) MinMin is the fastest 
algorithm. It can be observed that when the number of products 
is bigger than five (m > 5), Greedy outperforms the rest of 
algorithms. Differences between all algorithms are very sig-
nificant.

Run time execution for BB grows exponentially and it was 
impossible to prepare experiments for a bigger number of prod-

ucts. On the other hand, all heuristics are very fast so the idea is 
to further test its quality and run time for scalability issues by 
increasing the number of products m. The results are presented 
in the next subsection after the dispersion analysis.

6.3. Scalability: a set of experiments for heuristic algo-
rithms. In the second group of experiments a comparison be-
tween the set of algorithms was done regarding scalability. In 
these examples we increase the size of the instances as follow: 
n 2 f20, 40g, m 2 f5,  10, 15, …, 100g, and piecewise discount-
ing functions follow definition from subsection 6.1.
For each pair (n, m), 100 instances were generated. Instances 
were generated using the same procedure described in Sec-
tion 6.2.

As we are not able to compute the optimal solution value in 
a reasonable computational time given the size of the instances 
we evaluate the relative error γ of each strategy under each met-
ric. The relative error is formally defined as γ = 

J. Musial et al.

Table 3
A comparison of algorithm results’ dispersion for the coefficient of variation

(CV) normalized measure

products Greedy Forecasting Cellular MinMin BB

2 2.62% 1.02% 0.78% 6.33% 0.00%
3 3.96% 2.11% 4.23% 7.67% 0.00%
4 3.63% 2.53% 1.68% 7.21% 0.00%
5 3.72% 3.61% 2.33% 6.55% 0.00%
6 3.27% 3.31% 2.17% 5.69% 0.00%
7 3.62% 3.70% 2.71% 6.32% 0.00%
8 3.78% 3.81% 2.54% 5.93% 0.00%
9 2.67% 2.93% 1.82% 4.84% 0.00%

10 3.64% 3.28% 1.84% 4.48% 0.00%
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Fig. 4. Algorithm run time comparison - experiment with 20 shops
(including the optimal solution).

products. On the other hand, all heuristics are very fast so
the idea is to further test its quality and run time for scalability
issues by increasing the number of products m. The results are
presented in the next subsection after the dispersion analysis.

6.3. Scalability: a set of experiments for heuristic algo-
rithms. In the second group of experiments a comparison be-
tween the set of algorithms was done regarding scalability. In
these examples we increase the size of the instances as follow:
n ∈ {20,40}, m ∈ {5,10,15, . . . ,100}, and piecewise discount-
ing functions follow definition from subsection 6.1.
For each pair (n,m), 100 instances were generated. Instances
were generated using the same procedure described in Sec-
tion 6.2.

As we are not able to compute the optimal solution value in
a reasonable computational time given the size of the instances
we evaluate the relative error γ of each strategy under each
metric. The relative error is formally defined as γ = F(X)

F(X)best
,

where F(X) represents the solution found by a heuristic and
F(X)best denotes the best solution among all heuristics.

6.3.1. A set of experiments with 20 shops. Figure 5 presents
average solution values to the relative error for the 100 in-
stances over n = 20 shops, which are obtained by the evaluated
heuristics.

We can observe that Cellular outperforms the rest of
the algorithms. For all instances n,m where m =
{5,10,15, . . . ,100}, it provides the best quality solution. The
behavior of Cellular is the same than in the first set of experi-
ments.
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Fig. 5. Algorithm results comparison - experiment with 20 shops
(without BB solution). Relative error is γ =

F(X)
F(X)best

, where F(X)

represents the solution found by a heuristic and F(X)best denotes the
best solution among all heuristics.

Greedy presents better scalability than MinMin and Fore-
casting by providing the second best quality of solutions. For
more than m > 15 products it stabilized within 10-11% of the
Cellular algorithm solution. For a low number of products
m = 5 Forecasting propose almost the same quality of solution
as the best Cellular algorithm (0.48% more expensive). From
more than m > 15 products it becomes the worst algorithm
among the tested ones. Moreover, it is easily noticeable that
the quality of solution degrades with the increasing number of
products m (compared to the best Cellular algorithm).

The last heuristic algorithm - MinMin provides the worst so-
lutions for a lower number of products (m < 15). However, for
a bigger number of products it provides better solutions than
the Forecasting algorithm (but worse than Greedy). MinMin
provides solutions between 6% and 16% (on average) bigger
than best Cellular solutions.

Figure 6 contains a comparison of heuristic algorithm re-
sults dispersion. Each point represents the standard deviation
value (deviation around the best value calculated from all algo-
rithms) from 100 computational tests for 20 shops where every
value for each test is presented as a correlation between the re-
sult and the best algorithm result for this computation ( Greedy

best ,
Forecasting

best , Cellular
best , MinMin

best ). In each point the standard devia-
tion value is presented for the same instance of n shops and m
products for 100 computational tests. It can provide very use-
ful information concerning the quality (based on stability) of
the algorithm results. Table 4 contains the information which
is represented by the coefficient of variation (CV) normalized
measure (percentage value).

Figure 7 exposes information regarding the comparison of
algorithm run time [ms]. Each cell represents the average value
from 100 computational tests for 20 shops. We can observe
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, where 
F(X) represents the solution found by a heuristic and F(X)best 
denotes the best solution among all heuristics.

6.3.1. A set of experiments with 20 shops. Figure 5 presents 
average solution values to the relative error for the 100 in-
stances over n = 20 shops, which are obtained by the evaluated 
heuristics.

Table 3 
A comparison of algorithm results’ dispersion for the coefficient of 

variation (CV) normalized measure

products Greedy Forecasting Cellular MinMin BB

12 2.62% 1.02% 0.78% 6.33% 0.00%

13 3.96% 2.11% 4.23% 7.67% 0.00%

14 3.63% 2.53% 1.68% 7.21% 0.00%

15 3.72% 3.61% 2.33% 6.55% 0.00%

16 3.27% 3.31% 2.17% 5.69% 0.00%

17 3.62% 3.70% 2.71% 6.32% 0.00%

18 3.78% 3.81% 2.54% 5.93% 0.00%

19 2.67% 2.93% 1.82% 4.84% 0.00%

10 3.64% 3.28% 1.84% 4.48% 0.00%

Fig. 4. Algorithm run time comparison – experiment with 20 shops 
(including the optimal solution)
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Fig. 5. Algorithm results comparison – experiment with 20 shops 
(without BB solution). Relative error is γ = 
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Table 3
A comparison of algorithm results’ dispersion for the coefficient of variation

(CV) normalized measure

products Greedy Forecasting Cellular MinMin BB

2 2.62% 1.02% 0.78% 6.33% 0.00%
3 3.96% 2.11% 4.23% 7.67% 0.00%
4 3.63% 2.53% 1.68% 7.21% 0.00%
5 3.72% 3.61% 2.33% 6.55% 0.00%
6 3.27% 3.31% 2.17% 5.69% 0.00%
7 3.62% 3.70% 2.71% 6.32% 0.00%
8 3.78% 3.81% 2.54% 5.93% 0.00%
9 2.67% 2.93% 1.82% 4.84% 0.00%

10 3.64% 3.28% 1.84% 4.48% 0.00%
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Fig. 4. Algorithm run time comparison - experiment with 20 shops
(including the optimal solution).

products. On the other hand, all heuristics are very fast so
the idea is to further test its quality and run time for scalability
issues by increasing the number of products m. The results are
presented in the next subsection after the dispersion analysis.

6.3. Scalability: a set of experiments for heuristic algo-
rithms. In the second group of experiments a comparison be-
tween the set of algorithms was done regarding scalability. In
these examples we increase the size of the instances as follow:
n ∈ {20,40}, m ∈ {5,10,15, . . . ,100}, and piecewise discount-
ing functions follow definition from subsection 6.1.
For each pair (n,m), 100 instances were generated. Instances
were generated using the same procedure described in Sec-
tion 6.2.

As we are not able to compute the optimal solution value in
a reasonable computational time given the size of the instances
we evaluate the relative error γ of each strategy under each
metric. The relative error is formally defined as γ = F(X)

F(X)best
,

where F(X) represents the solution found by a heuristic and
F(X)best denotes the best solution among all heuristics.

6.3.1. A set of experiments with 20 shops. Figure 5 presents
average solution values to the relative error for the 100 in-
stances over n = 20 shops, which are obtained by the evaluated
heuristics.

We can observe that Cellular outperforms the rest of
the algorithms. For all instances n,m where m =
{5,10,15, . . . ,100}, it provides the best quality solution. The
behavior of Cellular is the same than in the first set of experi-
ments.

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 10  20  30  40  50  60  70  80  90  100

R
el

a
ti

v
e 

er
ro

r

Products

20 Shops

Greedy
Forecasting

Cellular
MinMin

Fig. 5. Algorithm results comparison - experiment with 20 shops
(without BB solution). Relative error is γ =

F(X)
F(X)best

, where F(X)

represents the solution found by a heuristic and F(X)best denotes the
best solution among all heuristics.

Greedy presents better scalability than MinMin and Fore-
casting by providing the second best quality of solutions. For
more than m > 15 products it stabilized within 10-11% of the
Cellular algorithm solution. For a low number of products
m = 5 Forecasting propose almost the same quality of solution
as the best Cellular algorithm (0.48% more expensive). From
more than m > 15 products it becomes the worst algorithm
among the tested ones. Moreover, it is easily noticeable that
the quality of solution degrades with the increasing number of
products m (compared to the best Cellular algorithm).

The last heuristic algorithm - MinMin provides the worst so-
lutions for a lower number of products (m < 15). However, for
a bigger number of products it provides better solutions than
the Forecasting algorithm (but worse than Greedy). MinMin
provides solutions between 6% and 16% (on average) bigger
than best Cellular solutions.

Figure 6 contains a comparison of heuristic algorithm re-
sults dispersion. Each point represents the standard deviation
value (deviation around the best value calculated from all algo-
rithms) from 100 computational tests for 20 shops where every
value for each test is presented as a correlation between the re-
sult and the best algorithm result for this computation ( Greedy

best ,
Forecasting

best , Cellular
best , MinMin

best ). In each point the standard devia-
tion value is presented for the same instance of n shops and m
products for 100 computational tests. It can provide very use-
ful information concerning the quality (based on stability) of
the algorithm results. Table 4 contains the information which
is represented by the coefficient of variation (CV) normalized
measure (percentage value).

Figure 7 exposes information regarding the comparison of
algorithm run time [ms]. Each cell represents the average value
from 100 computational tests for 20 shops. We can observe
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, where F(X) rep-
resents the solution found by a heuristic and F(X)best denotes the best 

solution among all heuristics
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We can observe that Cellular outperforms the rest of the al-
gorithms. For all instances n,  m where m 2 f5,  10,  15,  …,  100g, 
it provides the best quality solution. The behavior of Cellular 
is the same than in the first set of experiments.

Greedy presents better scalability than MinMin and Fore-
casting by providing the second best quality of solutions. 
For more than m > 15 products it stabilized within 10‒11% 
of the Cellular algorithm solution. For a low number of 
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products m = 5 Forecasting propose almost the same qual-
ity of solution as the best Cellular algorithm (0.48% more 
expensive). From more than m > 15 products it becomes 
the worst algorithm among the tested ones. Moreover, it is 

easily noticeable that the quality of solution degrades with 
the increasing number of products m (compared to the best 
Cellular algorithm).

The last heuristic algorithm – MinMin provides the worst 
solutions for a lower number of products (m < 15). However, 
for a bigger number of products it provides better solutions than 
the Forecasting algorithm (but worse than Greedy). MinMin 
provides solutions between 6% and 16% (on average) bigger 
than best Cellular solutions.

Figure 6 contains a comparison of heuristic algorithm re-
sults dispersion. Each point represents the standard deviation 
value (deviation around the best value calculated from all al-
gorithms) from 100 computational tests for 20 shops where 
every value for each test is presented as a correlation between 
the result and the best algorithm result for this computation 
( 

J. Musial et al.

Table 3
A comparison of algorithm results’ dispersion for the coefficient of variation

(CV) normalized measure

products Greedy Forecasting Cellular MinMin BB

2 2.62% 1.02% 0.78% 6.33% 0.00%
3 3.96% 2.11% 4.23% 7.67% 0.00%
4 3.63% 2.53% 1.68% 7.21% 0.00%
5 3.72% 3.61% 2.33% 6.55% 0.00%
6 3.27% 3.31% 2.17% 5.69% 0.00%
7 3.62% 3.70% 2.71% 6.32% 0.00%
8 3.78% 3.81% 2.54% 5.93% 0.00%
9 2.67% 2.93% 1.82% 4.84% 0.00%

10 3.64% 3.28% 1.84% 4.48% 0.00%
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Fig. 4. Algorithm run time comparison - experiment with 20 shops
(including the optimal solution).

products. On the other hand, all heuristics are very fast so
the idea is to further test its quality and run time for scalability
issues by increasing the number of products m. The results are
presented in the next subsection after the dispersion analysis.

6.3. Scalability: a set of experiments for heuristic algo-
rithms. In the second group of experiments a comparison be-
tween the set of algorithms was done regarding scalability. In
these examples we increase the size of the instances as follow:
n ∈ {20,40}, m ∈ {5,10,15, . . . ,100}, and piecewise discount-
ing functions follow definition from subsection 6.1.
For each pair (n,m), 100 instances were generated. Instances
were generated using the same procedure described in Sec-
tion 6.2.

As we are not able to compute the optimal solution value in
a reasonable computational time given the size of the instances
we evaluate the relative error γ of each strategy under each
metric. The relative error is formally defined as γ = F(X)

F(X)best
,

where F(X) represents the solution found by a heuristic and
F(X)best denotes the best solution among all heuristics.

6.3.1. A set of experiments with 20 shops. Figure 5 presents
average solution values to the relative error for the 100 in-
stances over n = 20 shops, which are obtained by the evaluated
heuristics.

We can observe that Cellular outperforms the rest of
the algorithms. For all instances n,m where m =
{5,10,15, . . . ,100}, it provides the best quality solution. The
behavior of Cellular is the same than in the first set of experi-
ments.
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Fig. 5. Algorithm results comparison - experiment with 20 shops
(without BB solution). Relative error is γ =

F(X)
F(X)best

, where F(X)

represents the solution found by a heuristic and F(X)best denotes the
best solution among all heuristics.

Greedy presents better scalability than MinMin and Fore-
casting by providing the second best quality of solutions. For
more than m > 15 products it stabilized within 10-11% of the
Cellular algorithm solution. For a low number of products
m = 5 Forecasting propose almost the same quality of solution
as the best Cellular algorithm (0.48% more expensive). From
more than m > 15 products it becomes the worst algorithm
among the tested ones. Moreover, it is easily noticeable that
the quality of solution degrades with the increasing number of
products m (compared to the best Cellular algorithm).

The last heuristic algorithm - MinMin provides the worst so-
lutions for a lower number of products (m < 15). However, for
a bigger number of products it provides better solutions than
the Forecasting algorithm (but worse than Greedy). MinMin
provides solutions between 6% and 16% (on average) bigger
than best Cellular solutions.

Figure 6 contains a comparison of heuristic algorithm re-
sults dispersion. Each point represents the standard deviation
value (deviation around the best value calculated from all algo-
rithms) from 100 computational tests for 20 shops where every
value for each test is presented as a correlation between the re-
sult and the best algorithm result for this computation ( Greedy

best ,
Forecasting

best , Cellular
best , MinMin

best ). In each point the standard devia-
tion value is presented for the same instance of n shops and m
products for 100 computational tests. It can provide very use-
ful information concerning the quality (based on stability) of
the algorithm results. Table 4 contains the information which
is represented by the coefficient of variation (CV) normalized
measure (percentage value).

Figure 7 exposes information regarding the comparison of
algorithm run time [ms]. Each cell represents the average value
from 100 computational tests for 20 shops. We can observe
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Table 3
A comparison of algorithm results’ dispersion for the coefficient of variation

(CV) normalized measure

products Greedy Forecasting Cellular MinMin BB

2 2.62% 1.02% 0.78% 6.33% 0.00%
3 3.96% 2.11% 4.23% 7.67% 0.00%
4 3.63% 2.53% 1.68% 7.21% 0.00%
5 3.72% 3.61% 2.33% 6.55% 0.00%
6 3.27% 3.31% 2.17% 5.69% 0.00%
7 3.62% 3.70% 2.71% 6.32% 0.00%
8 3.78% 3.81% 2.54% 5.93% 0.00%
9 2.67% 2.93% 1.82% 4.84% 0.00%

10 3.64% 3.28% 1.84% 4.48% 0.00%
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Fig. 4. Algorithm run time comparison - experiment with 20 shops
(including the optimal solution).

products. On the other hand, all heuristics are very fast so
the idea is to further test its quality and run time for scalability
issues by increasing the number of products m. The results are
presented in the next subsection after the dispersion analysis.

6.3. Scalability: a set of experiments for heuristic algo-
rithms. In the second group of experiments a comparison be-
tween the set of algorithms was done regarding scalability. In
these examples we increase the size of the instances as follow:
n ∈ {20,40}, m ∈ {5,10,15, . . . ,100}, and piecewise discount-
ing functions follow definition from subsection 6.1.
For each pair (n,m), 100 instances were generated. Instances
were generated using the same procedure described in Sec-
tion 6.2.

As we are not able to compute the optimal solution value in
a reasonable computational time given the size of the instances
we evaluate the relative error γ of each strategy under each
metric. The relative error is formally defined as γ = F(X)

F(X)best
,

where F(X) represents the solution found by a heuristic and
F(X)best denotes the best solution among all heuristics.

6.3.1. A set of experiments with 20 shops. Figure 5 presents
average solution values to the relative error for the 100 in-
stances over n = 20 shops, which are obtained by the evaluated
heuristics.

We can observe that Cellular outperforms the rest of
the algorithms. For all instances n,m where m =
{5,10,15, . . . ,100}, it provides the best quality solution. The
behavior of Cellular is the same than in the first set of experi-
ments.
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Fig. 5. Algorithm results comparison - experiment with 20 shops
(without BB solution). Relative error is γ =

F(X)
F(X)best

, where F(X)

represents the solution found by a heuristic and F(X)best denotes the
best solution among all heuristics.

Greedy presents better scalability than MinMin and Fore-
casting by providing the second best quality of solutions. For
more than m > 15 products it stabilized within 10-11% of the
Cellular algorithm solution. For a low number of products
m = 5 Forecasting propose almost the same quality of solution
as the best Cellular algorithm (0.48% more expensive). From
more than m > 15 products it becomes the worst algorithm
among the tested ones. Moreover, it is easily noticeable that
the quality of solution degrades with the increasing number of
products m (compared to the best Cellular algorithm).

The last heuristic algorithm - MinMin provides the worst so-
lutions for a lower number of products (m < 15). However, for
a bigger number of products it provides better solutions than
the Forecasting algorithm (but worse than Greedy). MinMin
provides solutions between 6% and 16% (on average) bigger
than best Cellular solutions.

Figure 6 contains a comparison of heuristic algorithm re-
sults dispersion. Each point represents the standard deviation
value (deviation around the best value calculated from all algo-
rithms) from 100 computational tests for 20 shops where every
value for each test is presented as a correlation between the re-
sult and the best algorithm result for this computation ( Greedy

best ,
Forecasting

best , Cellular
best , MinMin

best ). In each point the standard devia-
tion value is presented for the same instance of n shops and m
products for 100 computational tests. It can provide very use-
ful information concerning the quality (based on stability) of
the algorithm results. Table 4 contains the information which
is represented by the coefficient of variation (CV) normalized
measure (percentage value).

Figure 7 exposes information regarding the comparison of
algorithm run time [ms]. Each cell represents the average value
from 100 computational tests for 20 shops. We can observe
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Table 3
A comparison of algorithm results’ dispersion for the coefficient of variation

(CV) normalized measure

products Greedy Forecasting Cellular MinMin BB

2 2.62% 1.02% 0.78% 6.33% 0.00%
3 3.96% 2.11% 4.23% 7.67% 0.00%
4 3.63% 2.53% 1.68% 7.21% 0.00%
5 3.72% 3.61% 2.33% 6.55% 0.00%
6 3.27% 3.31% 2.17% 5.69% 0.00%
7 3.62% 3.70% 2.71% 6.32% 0.00%
8 3.78% 3.81% 2.54% 5.93% 0.00%
9 2.67% 2.93% 1.82% 4.84% 0.00%

10 3.64% 3.28% 1.84% 4.48% 0.00%
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Fig. 4. Algorithm run time comparison - experiment with 20 shops
(including the optimal solution).

products. On the other hand, all heuristics are very fast so
the idea is to further test its quality and run time for scalability
issues by increasing the number of products m. The results are
presented in the next subsection after the dispersion analysis.

6.3. Scalability: a set of experiments for heuristic algo-
rithms. In the second group of experiments a comparison be-
tween the set of algorithms was done regarding scalability. In
these examples we increase the size of the instances as follow:
n ∈ {20,40}, m ∈ {5,10,15, . . . ,100}, and piecewise discount-
ing functions follow definition from subsection 6.1.
For each pair (n,m), 100 instances were generated. Instances
were generated using the same procedure described in Sec-
tion 6.2.

As we are not able to compute the optimal solution value in
a reasonable computational time given the size of the instances
we evaluate the relative error γ of each strategy under each
metric. The relative error is formally defined as γ = F(X)

F(X)best
,

where F(X) represents the solution found by a heuristic and
F(X)best denotes the best solution among all heuristics.

6.3.1. A set of experiments with 20 shops. Figure 5 presents
average solution values to the relative error for the 100 in-
stances over n = 20 shops, which are obtained by the evaluated
heuristics.

We can observe that Cellular outperforms the rest of
the algorithms. For all instances n,m where m =
{5,10,15, . . . ,100}, it provides the best quality solution. The
behavior of Cellular is the same than in the first set of experi-
ments.
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Fig. 5. Algorithm results comparison - experiment with 20 shops
(without BB solution). Relative error is γ =

F(X)
F(X)best

, where F(X)

represents the solution found by a heuristic and F(X)best denotes the
best solution among all heuristics.

Greedy presents better scalability than MinMin and Fore-
casting by providing the second best quality of solutions. For
more than m > 15 products it stabilized within 10-11% of the
Cellular algorithm solution. For a low number of products
m = 5 Forecasting propose almost the same quality of solution
as the best Cellular algorithm (0.48% more expensive). From
more than m > 15 products it becomes the worst algorithm
among the tested ones. Moreover, it is easily noticeable that
the quality of solution degrades with the increasing number of
products m (compared to the best Cellular algorithm).

The last heuristic algorithm - MinMin provides the worst so-
lutions for a lower number of products (m < 15). However, for
a bigger number of products it provides better solutions than
the Forecasting algorithm (but worse than Greedy). MinMin
provides solutions between 6% and 16% (on average) bigger
than best Cellular solutions.

Figure 6 contains a comparison of heuristic algorithm re-
sults dispersion. Each point represents the standard deviation
value (deviation around the best value calculated from all algo-
rithms) from 100 computational tests for 20 shops where every
value for each test is presented as a correlation between the re-
sult and the best algorithm result for this computation ( Greedy

best ,
Forecasting

best , Cellular
best , MinMin

best ). In each point the standard devia-
tion value is presented for the same instance of n shops and m
products for 100 computational tests. It can provide very use-
ful information concerning the quality (based on stability) of
the algorithm results. Table 4 contains the information which
is represented by the coefficient of variation (CV) normalized
measure (percentage value).

Figure 7 exposes information regarding the comparison of
algorithm run time [ms]. Each cell represents the average value
from 100 computational tests for 20 shops. We can observe
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Table 3
A comparison of algorithm results’ dispersion for the coefficient of variation

(CV) normalized measure

products Greedy Forecasting Cellular MinMin BB

2 2.62% 1.02% 0.78% 6.33% 0.00%
3 3.96% 2.11% 4.23% 7.67% 0.00%
4 3.63% 2.53% 1.68% 7.21% 0.00%
5 3.72% 3.61% 2.33% 6.55% 0.00%
6 3.27% 3.31% 2.17% 5.69% 0.00%
7 3.62% 3.70% 2.71% 6.32% 0.00%
8 3.78% 3.81% 2.54% 5.93% 0.00%
9 2.67% 2.93% 1.82% 4.84% 0.00%

10 3.64% 3.28% 1.84% 4.48% 0.00%

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1  2  3  4  5  6  7  8  9  10

T
im

e 
[m

s]

Products

20 Shops

Greedy
Forecasting

Cellular
MinMin

BB

Fig. 4. Algorithm run time comparison - experiment with 20 shops
(including the optimal solution).

products. On the other hand, all heuristics are very fast so
the idea is to further test its quality and run time for scalability
issues by increasing the number of products m. The results are
presented in the next subsection after the dispersion analysis.

6.3. Scalability: a set of experiments for heuristic algo-
rithms. In the second group of experiments a comparison be-
tween the set of algorithms was done regarding scalability. In
these examples we increase the size of the instances as follow:
n ∈ {20,40}, m ∈ {5,10,15, . . . ,100}, and piecewise discount-
ing functions follow definition from subsection 6.1.
For each pair (n,m), 100 instances were generated. Instances
were generated using the same procedure described in Sec-
tion 6.2.

As we are not able to compute the optimal solution value in
a reasonable computational time given the size of the instances
we evaluate the relative error γ of each strategy under each
metric. The relative error is formally defined as γ = F(X)

F(X)best
,

where F(X) represents the solution found by a heuristic and
F(X)best denotes the best solution among all heuristics.

6.3.1. A set of experiments with 20 shops. Figure 5 presents
average solution values to the relative error for the 100 in-
stances over n = 20 shops, which are obtained by the evaluated
heuristics.

We can observe that Cellular outperforms the rest of
the algorithms. For all instances n,m where m =
{5,10,15, . . . ,100}, it provides the best quality solution. The
behavior of Cellular is the same than in the first set of experi-
ments.
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Fig. 5. Algorithm results comparison - experiment with 20 shops
(without BB solution). Relative error is γ =

F(X)
F(X)best

, where F(X)

represents the solution found by a heuristic and F(X)best denotes the
best solution among all heuristics.

Greedy presents better scalability than MinMin and Fore-
casting by providing the second best quality of solutions. For
more than m > 15 products it stabilized within 10-11% of the
Cellular algorithm solution. For a low number of products
m = 5 Forecasting propose almost the same quality of solution
as the best Cellular algorithm (0.48% more expensive). From
more than m > 15 products it becomes the worst algorithm
among the tested ones. Moreover, it is easily noticeable that
the quality of solution degrades with the increasing number of
products m (compared to the best Cellular algorithm).

The last heuristic algorithm - MinMin provides the worst so-
lutions for a lower number of products (m < 15). However, for
a bigger number of products it provides better solutions than
the Forecasting algorithm (but worse than Greedy). MinMin
provides solutions between 6% and 16% (on average) bigger
than best Cellular solutions.

Figure 6 contains a comparison of heuristic algorithm re-
sults dispersion. Each point represents the standard deviation
value (deviation around the best value calculated from all algo-
rithms) from 100 computational tests for 20 shops where every
value for each test is presented as a correlation between the re-
sult and the best algorithm result for this computation ( Greedy

best ,
Forecasting

best , Cellular
best , MinMin

best ). In each point the standard devia-
tion value is presented for the same instance of n shops and m
products for 100 computational tests. It can provide very use-
ful information concerning the quality (based on stability) of
the algorithm results. Table 4 contains the information which
is represented by the coefficient of variation (CV) normalized
measure (percentage value).

Figure 7 exposes information regarding the comparison of
algorithm run time [ms]. Each cell represents the average value
from 100 computational tests for 20 shops. We can observe
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). In each point the standard 
deviation value is presented for the same instance of n shops 
and m products for 100 computational tests. It can provide very 
useful information concerning the quality (based on stability) 
of the algorithm results. Table 4 contains the information which 
is represented by the coefficient of variation (CV) normalized 
measure (percentage value).

Figure 7 exposes information regarding the comparison 
of algorithm run time [ms]. Each cell represents the average 
value from 100 computational tests for 20 shops. We can ob-
serve that for a low number of products m = 5 MinMin is the 
fastest algorithm. For other instances of the ISOPwD problem 
(number of products m > 5), algorithm Greedy is the fastest. 
Differences between all algorithms are very significant. The 
following example illustrates these differences. A few obser-
vations are worth noting.

Fig. 6. Algorithm standard deviation chart – experiment with 20 shops
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Table 4 
Heuristic algorithm results’ dispersion for the coefficient  

of variation (CV) normalized measure

products shops Greedy Forecasting Cellular MinMin

15 20 4.45% 2.92% 2.62% 6.58%

10 20 3.75% 3.73% 0.94% 5.24%

15 20 2.79% 3.17% 0.00% 3.86%

20 20 3.18% 3.19% 0.00% 3.93%

25 20 2.65% 2.65% 0.00% 3.74%

30 20 2.71% 3.09% 0.00% 3.26%

35 20 2.36% 2.47% 0.00% 3.50%

40 20 3.42% 2.36% 0.00% 3.82%

45 20 3.04% 2.38% 0.00% 3.62%

50 20 3.09% 2.40% 0.00% 3.61%

55 20 2.69% 2.06% 0.00% 3.29%

60 20 2.51% 2.27% 0.00% 3.40%

65 20 2.10% 2.17% 0.00% 3.72%

70 20 3.77% 2.12% 0.00% 3.62%

75 20 2.57% 2.35% 0.00% 3.37%

80 20 2.73% 1.98% 0.00% 3.23%

85 20 3.48% 2.36% 0.00% 3.56%

90 20 2.06% 1.99% 0.00% 3.05%

95 20 3.47% 1.98% 0.00% 3.49%

100 20 2.71% 3.09% 0.00% 3.26%

Fig. 7. Algorithm processing time comparison – experiment with 
20 shops (without BB solution)
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6.3.2. A set of experiments with 40 shops. There were no 
changes regarding the behavior of Cellular, it provides the best 
quality of solutions. That is, for all instances n, m it provided 
the best solution.
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Figure 8 displays relative error average results. We can no-
tice that characteristics of the results are not far away from 
experiment with m = 20 shops.

Algorithm Greedy provides the second best quality of 
solutions. For more than m > 25 products it stabilized within 
9.6‒10.8% of the Cellular algorithm solutions. For a low number 
of products m = 5 Forecasting computes almost the same quality 
of solution as the best Cellular algorithm (1.55% more expen-
sive). From more than m > 10 products it becomes the worst al-
gorithm among the tested ones. Moreover, it is easily noticeable 
that the quality of solution degrade with the increasing number 
of products m (compared to the best {Cellular algorithm}) from 
1.55% to 15.83% percent on average greater than Cellular. Min-
Min provides the worst solutions for a lower number of products 
(m = 5). However, for a bigger number of products it provides 
better solutions than the Forecasting algorithm (but worse than 
Greedy). The algorithm also provides better scalability than the 
previous experiment for smaller number of web-stores.

Figure 9 contains a comparison of heuristic algorithm re-
sults dispersion.

Regarding 40 shops experiment general observations are 
similar to the ones from the 20 web-stores experiment. How-
ever, some differences are significant and worth to notice. All 
standard deviation and CV values are lower for the experiment 
with 40 shops. Algorithm Greedy provides a lower dispersion 
level than Forecasting (slightly but still). Observations for the 
Cellular and MinMin algorithms are similar to the experiment 
with 20 web-stores.

Regarding the computation time (see Fig. 10), for all in-
stances with n = 40 web-stores, algorithm Greedy is the fast-
est. Differences between all algorithms are very significant. 
Calculation times are even more important here, since goal ap-
plication will work as an online web-site. There is plenty of 
research showing that users do not want to wait to see a web-
page content, because they quickly lose interest. An up-to-date 
survey is given in [32].

Fig. 8. Algorithm results comparison (Relative error measure) – ex-
periment with 40 shops (without BB solution)
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Fig. 9. Algorithm standard deviation chart – experiment with 40 shops
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Fig. 10. Algorithm processing time comparison – experiment with 
40 shops (without BB solution)

 0

 1000

 2000

 3000

 4000

 5000

 10  20  30  40  50  60  70  80  90  100

T
im

e 
[m

s]

Products

40 Shops

Greedy
Forecasting

Cellular
MinMin

 0

 1000

 2000

 3000

 4000

 5000

 10  20  30  40  50  60  70  80  90  100

T
im

e 
[m

s]

Products

40 Shops

Greedy
Forecasting

Cellular
MinMin

Concerning all results collected in the computational exper-
iment it can be stated that the Cellular algorithm provides the 
best solutions among all heuristic algorithms. The algorithm also 
computes more stable solutions than the rest of compared algo-
rithms. On the other hand, it is the slowest one. What is worth 
noting is that it could be much more efficient when parallelized 
on five machines (each cell can process on a different machine). 
Another important consideration is that in a real e-commerce 
web site the instances of the algorithms will be executed in the 
server machines (i.e. in a web-server of a data center), which 
usually are more powerful than customers’ machines.

Algorithm Greedy can result in a lot of interest due to very 
fast processing times in which it can provide a good quality 
of solutions. Both algorithms Greedy and Forecasting can be 
parallelized for two machines (both algorithms make two sepa-
rate executions and pick the best of these two at the final step).

The performance of MinMin can be improved by using 
a local search algorithm [33]. To improve the run time exe-
cution MinMin can be easily parallelized. There are different 
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parallel implementations of the min-min scheduling algorithm 
reported in literature [33, 34], both CPU and GPU parallel 
implementations.

Given the fast run time execution and the good quality of 
solutions that Greedy, Forecasting and MinMin can compute 
in average their solutions can be used as initial seeds for Cel-
lular. It could help to improve the run time execution of the 
algorithm without degrading its performance. Special database 
system optimization could be performed to decrease all-around 
computational times [35].

7. Conclusions

In this paper, we addressed the Internet shopping optimization 
problem including price discounts. For the practical application, 
we created a working model as close to real Internet shopping 
conditions as possible. The main reason was their wide choice 
in Internet web-stores and frequency purchase. A new set of 
algorithms is presented, three heuristics and a new cellular pro-
cessing optimization algorithm. Computer experiments demon-
strated their good performance. The results generated by the 
algorithms were compared to the optimal solutions computed 
by a proposed branch and bound algorithm.

As for current version of the problem (doesn’t count yet 
with a linear model) it is not possible at the moment to perform 
a relaxation technique on the restrictions or to implement it on 
a MIP solver such as CPLEX or Gurobi. Nonetheless, presenta-
tion of a valid MILP model is certainly worth considering and 
interesting future step – this will be one of our next challenges.

In the future, we plan to extend the Internet shopping model to 
include additional constraints such as: minimum delivery times, 
incomplete shopping lists realization, and maximum budget. 
Moreover, we plan to propose new quality algorithms for dual 
discounting function ISOP [36]. The experimental results demon-
strated the potential by the new Cellular processing optimization 
algorithm. However, one of the main concerns for its applicabil-
ity to ISOP is the time needed to find a solution. To alleviate the 
problem and also deal with scalability we consider investigating 
a parallel version of the algorithm on a GPU infrastructure. Fur-
thermore, there are some interesting similarities between ISOP 
and exciting Cloud Brokering [37]. Linking it with ISOP may 
result in the possibility of using algorithms prepared for ISOP.
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