
505Bull. Pol. Ac.: Tech. 64(3) 2016

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 64, No. 3, 2016
DOI: 10.1515/bpasts-2016-0056

*e-mail: Jedrzej.Musial@cs.put.poznan.pl

Abstract. The Internet shopping optimization problem arises when a customer aims to purchase a list of goods from a set of web-stores with
a minimum total cost. This problem is NP-hard in the strong sense. We are interested in solving the Internet shopping optimization problem
with additional delivery costs associated to the web-stores where the goods are bought. It is of interest to extend the model including price
discounts of goods.
The aim of this paper is to present a set of optimization algorithms to solve the problem. Our purpose is to find a compromise solution between
computational time and results close to the optimum value. The performance of the set of algorithms is evaluated through simulations using
real world data collected from 32 web-stores. The quality of the results provided by the set of algorithms is compared to the optimal solutions
for small-size instances of the problem. The optimization algorithms are also evaluated regarding scalability when the size of the instances
increases. The set of results revealed that the algorithms are able to compute good quality solutions close to the optimum in a reasonable time
with very good scalability demonstrating their practicability.

Key words: e-commerce, Internet shopping, applications of operations research, approximations, algorithms, heuristics, combinatorial opti-
mization.

Algorithms solving the Internet shopping optimization problem
with price discounts

J. MUSIAL1*, J.E. PECERO2, M.C. LOPEZ-LOCES3, H.J. FRAIRE-HUACUJA3,
P. BOUVRY2, and J. BLAZEWICZ1, 4

1Institute of Computing Science, Poznan University of Technology, 2 Piotrowo St., 60-965 Poznan, Poland
2Comp. Sci. and Commun. Res. Unit, University of Luxembourg, 6 rue Coudenhove Kalergi, L-1359 Luxembourg, Luxembourg

3Instituto Tecnológico de Ciudad Madero, Tecnológico Nacional de México, 1º de Mayo S/N, 89440, Ciudad Madero, Mexico
4Institute of Bioorganic Chemistry, Polish Academy of Sciences, 12/14 Noskowskiego St., 61-704 Poznan, Poland

ping. Partial solution to the most trivial version of the problem
(just one product, no discounts, no additional costs, and so on)
comes from software agents [1], so called price comparators.
However their current functionality is limited to building a price
rank for a single product among registered offers that fit to the
customer’s query (search phrase).

It is worth noting that beside all benefits of Internet shop-
ping, it is still a type of shopping that may lead to problematic
behaviors. One can notice that some customers may be addicted
to shopping on the Internet. This kind of addiction is some-
how similar to gaming and general Internet dependency. Many
types of addictions and negative forms of consumptions con-
nected with shopping in general have been widely researched
and described in both medial and business journals. Business-
Dictionary.com states that shopping is “the process of brows-
ing and/or purchasing items in exchange for money’’. What
will be important here that the platform is not so important.
Therefore, Internet shopping experience may cause many of
these negative behaviors. Follow the publication [2] for more
information about different types of online shopping behaviors
and addictions.

State-of-the-art research on the problem we will tackle in
this paper consists of works that introduced Internet shopping
optimization problem (ISOP in short) and more complicated
versions of the mentioned problem, taking into account also
price discounts. [3] introduced ISOP with the following idea.
The addressed problem is to manage a multiple item shopping
list over several shopping locations. The objective is to have all

1. Introduction

Internet shopping, fitting into a business-to-consumer subcat-
egory, becomes more and more popular thanks to the facilities
provided by the new information and communication technolo-
gies such as cloud computing, mobile computing (mobile devic-
es – smartphones, tablets), the availability of data centers, and
the improvement in the payment gateways on trusted computing
platforms. Products available in web-stores are often cheaper
than those offered by regular local retailers, and a wide choice
of offers is available just a click away from the customer. Based
on outstanding logistics, the delivery can usually be operated
within 48 hours or less. Customers often need to take into ac-
count that shipping cost are charged, so that it is a good idea to
group purchased products into sets and buy them from small
number of retailers to minimize these delivery costs. Automat-
ing such decisions requires three elements: information about
the product availability, price lists and finally a specialized an-
alytical tool that could find the minimal subset of shops (in this
work we use shops and web-stores interchangeably) where all
products from the customer’s shopping list could be bought at
the lowest price. To automate these decisions one can prepare an
algorithm / computer tool to calculate the best possible solution
from the customers perspective. The issue could be perceived as
an Internet optimization problem connected with online shop-

 - 10.1515/bpasts-2016-0056
Downloaded from De Gruyter Online at 09/27/2016 01:29:57PM

via Gdansk University of Technology

506 Bull. Pol. Ac.: Tech. 64(3) 2016

J. Musial et al.

shopping done at minimum total expense. It is worth pointing
out that dividing the original shopping list into several sub-lists
with items being delivered by different providers increases de-
livery costs. These are counted and paid individually for each
package (sub-list) assigned to a specific Internet shop in the op-
timization process. Authors focused on the problem definition
and its complexity analysis (with some sub-cases of the main
problem). The first algorithms and computational results were
introduced in [4].
Much more complicated version of ISOP that takes into account
price discounts was introduced in [5, 6]. The Focus was on the
problem definition and complexity analysis. Some basic algo-
rithms were introduced. The current paper is focused on the
introduced problem with new achievements and contributions
to the shopping optimization topic.

ISOP could be perceived as a base general name for Inter-
net shopping problems since it leaves a lot of space for future
additional requirements and attributes. Introducing complicated
multi-objective decision-aided ISOP or a multi-objective prob-
lem could be one the upcoming interesting research steps. Many
additional decisions could be made by customers with respect to
their personal shops preferences, trust, delivery time, negative
factors, and all other significant elements. Since the number
of decisions could increase, it would be reasonable to support
the client with a specific system or tool. This program would
attempt to help them to make reasonable decisions that satisfy
the customer and do not imply significant price changes. An
interesting idea of providing a simple tool that helps decision
makers make good decisions in the financial market is described
in the literature [7].

In this paper we address the Internet shopping optimization
problem considering delivery costs. It is of interest from the
customer side to investigate an extended version of the problem
which also considers price discounts [5, 6] offered by different
sellers. The discount policy is based on real world observations
and similar to that used in [8], in the sense that is expresses the
discount as a function of the total quantity of money spent in
the web-store; the more money a customer spends, the bigger
discount he may obtain. In this work, we assume that there are
no differences between the quality of the goods the web-stores
sell beside the prices they charge for the different products.

We introduce a new set of heuristic approaches to solve
the problem. The set of heuristics is composed of a new light-
weight metaheuristic based on a cellular optimization process,
a extended greedy algorithm and two state-of-the-art greedy
algorithms. We have designed the heuristics as a compromise
solution balancing computational time and results close to the
optimum solution. We empirically evaluate the heuristics on
large set of real world data. The set of data was collected from
32 stores and covered the largest United States-based stores,
including Amazon, BarnesandNoble.com, Borders.com, Buy.
com, Booksamillion and top sellers among Internet bookstores
in Poland such as empik.com and merlin.pl. We compare the
performance of the proposed heuristics to the optimal values.
The optimal solutions for small problem instances are computed
using a branch and bound algorithm. To evaluate the scalability
of the heuristics, we increased the problem size.

To enlighten the pure original content of the paper one
should notice such important elements as: new original cellu-
lar algorithm created especially to solve a problem, redesigned
forecasting algorithm, problem-specific modification of a state-
of-the-art algorithm, new world data model as a data generator
for an experiment, original designed experiment with a vast
number of computational test, huge portion of computational
results carefully analyzed and described by the authors.

The paper is organized as follows. Section 2 describes the
problem model. In Section 3, some of the relevant work is pre-
sented. In Section 4, we consider the extended version of the
investigated problem. Section 5 provides a detailed description
of a new set of proposed heuristics. It is followed by experi-
mental results presentation in Section 6. We conclude the paper
in Section 7.

2. Problem definition

Notation used throughout this paper is given in Table 1.

Table 1
Notation

Symbol Explanation

M set of products

N set of shops

m number of products

n number of shops

i product indicator

j shop indicator

Mj multiset of products available in shop j

dj delivery price of all products from shop j

yj usage indicator for shop j

pij cost of product i in shop j

xij usage indicator for product i in shop j

T cumulative value of all products bought in all shops

Tj cumulative value of all products bought in shop j

fj(Tj) piecewise function for all products bought in shop j

X = (X1,…, Xn) sequence of selections of products in shops 1,…, n

F(X) sum of product and delivery costs

d(x) 0-1 indicator function for x = 0 and x > 0

X¤ optimal sequence of selections of products

F¤ optimal (minimum) total cost

Internet shopping optimization problem (ISOP) should be
described as follows. A single buyer is looking for a multiset
of products M = f1, …, mg to buy in n shops. A multiset of
available products Mj, a cost pij of product i in store j, and a de-
livery cost dj of any subset of the products from shop j. It is as-
sumed that pij = 1 if i 2/ Mj. The problem is to find a sequence
of disjoint selections (or carts) of products X  = (X1, …, Xn),
which we call a cart sequence, such that Xj µ Mj, j = 1, …, n,

 - 10.1515/bpasts-2016-0056
Downloaded from De Gruyter Online at 09/27/2016 01:29:57PM

via Gdansk University of Technology

507Bull. Pol. Ac.: Tech. 64(3) 2016

Algorithms solving the Internet shopping optimization problem with price discounts

[n
j=1Xj = M, and the total product and delivery cost, denoted

as F(X):= Σn
j =1(δ(|Xj |)dj + Σi2Xj

pij), is minimized. Here |Xj |
denotes the cardinality of the multiset Xj, and δ(x) = 0 if x = 0
and δ(x) = 1 if x > 0. Its solution is denoted as X¤, and its
solution value as F¤.

It has been proved that ISOP belongs to the NP-hard prob-
lems family [3].

3. Related work

Motivated by the problem of buying multiple products from
different web-stores, [3] modeled Internet shopping as an op-
timization problem, in which a customer wants to buy a list of
products from a set of online stores at the minimum final price.
The authors showed that the problem is NP-hard in the strong
sense and designed a set of polynomial time algorithms for spe-
cial cases of the problem. During previous research different
versions (specializations) of the Internet shopping problem were
examined [5]. For example, due to NP-hardness of the optimi-
zation problem, [9] designed a heuristic solution to optimize
the shopping basket and evaluate it for the customer basket
optimization problem to make it applicable for solving complex
shopping cart optimization in on-line applications. Moreover, it
is proven that the problem is not approximable in polynomial
time [3]. The archetype of the presented problem was a web-
based customer assistance system dedicated to pharmacy shop-
ping that helps customers find shops in a geographically defined
range where the entire shopping list could be realized at the best
total price [10]. For the general discussion on the e-commerce
problems development and the way it evolves over last years
one should refers to the situation in the recent past [11].

It is worth noting that there are some similarities between
ISOP and the well-known facility location problem (FLP) [12].
The main characteristics of the FLP are space, the metric, given
customer locations and given or not given positions for facility
locations. A traditional FLP is to open a number of facilities
in arbitrary positions of the space (continuous problem) or in
a subset of given positions (discrete problem) and to assign cus-
tomers to the opened facilities so that the sum of opening costs
and costs related to the distances between customer locations
and their corresponding facility locations is minimized.

Discussions of FLPs can be found in [13–16]. The tradi-
tional discrete FLP is NP-hard [17] in the strong sense. Note,
however, that the general problem ISOP with price discounts
cannot be treated as a traditional discrete FLP because there is
no evident motivation for a discount on the cumulative cost in
the sense of distances. The important point to note here is that
this problem and ISOP are not each other’s sub-cases, while
the traditional discrete FLP is a special case of any of these
problems.

Looking at the Internet shopping optimization problem with
the focus on price discounts, one can notice some similarities
with total quantity discount problem (TQD) [8]. To show the
similarities and most of all to show distinct differences we
should enclose mathematical formulation of TQD. One can
define G as the set of m goods, indexed by k, and S as the set

of n suppliers, indexed by i. For each good k in G, dk as the
amount of good k to be procured is defined. To each supplier
i in S we associate a sequence of intervals Zi = f0, 1, …, maxig,
indexed by j. Furthermore, for each supplier i 2 S and interval
j 2 Zi, lij and uij define the minimum and maximum number of
goods respectively that needs to be ordered from supplier i to
be in interval j. Finally, for each supplier i 2 S, for each interval
j 2 Zi and each good k 2 G, let cijk be the price for one item of
good k purchased from supplier i in its j-th interval.
Similarities between ISOP with price discounts and TQD prob-
lem can be noticed if we threat products to buy M as goods G
(dk is amount of the same good k) and shops N as suppliers S.
Piecewise discounting function fj for shop j will be associated
with a sequence of intervals Zi for supplier i. Price pij of product
i from shop j can be shown as price cik for one item of good
k purchased from supplier i. Piecewise function for shop j ap-
plied to a product price fj(pij) should be treated as cijk – price
for one item of good k purchased from supplier i in its j-th in-
terval. However ISOP includes shipping costs that are specific
to each shops. This feature makes ISOP new enhanced version
of the TQD problem.
It is worth pointing out that the decision version of the TQD
problem is strongly NP-complete. Moreover, no polynomi-
al-time approximation algorithm with constant worst-case ratio
exists for the TQD problem (unless

Algorithms Solving the Internet Shopping Optimization Problem with Price Discount

3. Related Work

Motivated by the problem of buying multiple products from
different web-stores, [3] modeled Internet shopping as an op-
timization problem, where a customer wants to buy a list of
products from a set of online stores at the minimum final price.
The authors showed that the problem is NP-hard in the strong
sense and designed a set of polynomial time algorithms for
special cases of the problem. During previous research dif-
ferent versions (specializations) of the Internet shopping prob-
lem were examined [5]. For example, due to NP-hardness of
the optimization problem, [9] designed a heuristic solution to
optimize the shopping basket and evaluate it for the customer
basket optimization problem to make it applicable for solving
complex shopping cart optimization in on-line applications.
Moreover, it is proven that the problem is not approximable
in polynomial time [3]. The archetype of the presented prob-
lem was a web-based customer assistance system dedicated to
pharmacy shopping that helps customers find shops in a geo-
graphically defined range where the entire shopping list could
be realized at the best total price [10]. For the general discus-
sion on the e-commerce problems development and the way it
evolves over last years one should refers to the situation in the
recent past [11].

It is worth noting that there are some similarities be-
tween ISOP and the well-known Facility Location Problem
(FLP) [12]. The main characteristics of the FLP are space,
the metric, given customer locations and given or not given
positions for facility locations. A traditional FLP is to open a
number of facilities in arbitrary positions of the space (contin-
uous problem) or in a subset of given positions (discrete prob-
lem) and to assign customers to the opened facilities so that the
sum of opening costs and costs related to the distances between
customer locations and their corresponding facility locations is
minimized.

Discussions of FLPs can be found in [13, 14, 15, 16]. The
traditional discrete FLP is NP-hard [17] in the strong sense.
Note, however, that the general problem ISOP with price dis-
counts cannot be treated as a traditional discrete FLP because
there is no evident motivation for a discount on the cumulative
cost in the sense of distances. The important point to note here
is that this problem and ISOP are not each other’s sub-cases,
while the traditional discrete FLP is a special case of any of
these problems.

Looking at the Internet Shopping Optimization Problem
considering price discounts one can notice some similarities
with Total Quantity Discount Problem (TQD) [8]. To show
the similarities and most of all to show distinct differences we
should enclose mathematical formulation of TQD. One can de-
fine G as the set of m goods, indexed by k, and S as the set of n
suppliers, indexed by i. For each good k in G, dk as the amount
of good k to be procured is defined. To each supplier i in S
we associate a sequence of intervals Zi = {0,1, . . . ,maxi}, in-
dexed by j. Furthermore, for each supplier i ∈ S and interval
j ∈ Zi, li j and ui j define the minimum and maximum number
of goods respectively that needs to be ordered from supplier
i to be in interval j. Finally, for each supplier i ∈ S, for each

interval j ∈ Zi and each good k ∈ G, let ci jk be the price for one
item of good k purchased from supplier i in its j-th interval.
Similarities between ISOP with price discounts and TQD prob-
lem can be noticed if we threat products to buy M as goods G
(dk is amount of the same good k) and shops N as suppliers
S. Piecewise discounting function f j for shop j will be associ-
ated with a sequence of intervals Zi for supplier i. Price pi j of
product i from shop j can be shown as price cik for one item of
good k purchased from supplier i. Piecewise function for shop
j applied to a product price f j(pi j) should be treaten as ci jk -
price for one item of good k purchased from supplier i in its
j-th interval. However ISOP includes shipping costs that are
specific to each shops. This feature makes ISOP new enhanced
version of the TQD problem.
It is worth pointing out that the decision version of the TQD
problem is strongly NP-complete. Moreover, no polynomial-
time approximation algorithm with constant worst-case ratio
exists for the TQD problem (unless P = N P). More in-
formation on many variations on TQD (i.e. permissible delay
in payments in [18]), solutions, exact algorithms [19] can be
found in the literature [8, 20, 21].

4. Extended Model
In this section we present a known model of the optimization
problem, Internet Shopping Optimization Problem considering
delivery costs and including price discounts (ISOPwD) [5]. Its
mathematical program can be written as follows:

min
m

∑
i=1

n

∑
j=1

f j(pi jxi j)+
n

∑
j=1

d jy j,

s.t.
n

∑
j=1

xi j = 1, i = 1, . . . ,m,

0 ≤ xi j ≤ y j, i = 1, . . . ,m, j = 1, . . . ,n,

xi j ∈ {0,1}, y j ∈ {0,1}, i = 1, . . . ,m, j = 1, . . . ,n.

were a customer would like to buy products from a given set
M = {1, . . . ,m} in a given set of Internet shops N = {1, . . . ,n}
at the minimum total final price. There are the following given
parameters and decision variables:

d j - delivery price of all products from shop j,
y j - usage indicator for shop j,
pi j - standard price of product i in shop j,
xi j - usage indicator for product i in shop j,
f j(Tj) - piecewise function (discounting) for final price of
all products T bought in shop j.

A piecewise function model is non-linear according to its
original nature and it is why we are using non-linear model
here.

PROPOSITION 1. In [3] ISOP is demonstrated to be part
of NP-Hard problems. The ISOP can be reduced to the basic
ISOPwD problem.

STATEMENT 1. The ISOPwD is NP-Hard in the strong
sense.

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

). More infor-
mation on many variations on TQD (i.e. permissible delay in
payments in [18]), solutions, exact algorithms [19] can be found
in the literature [8, 20, 21].

4. Extended model

In this section we present a known model of the optimization
problem, Internet shopping optimization problem considering
delivery costs and including price discounts (ISOPwD) [5]. Its
mathematical program can be written as follows:

Algorithms Solving the Internet Shopping Optimization Problem with Price Discount

3. Related Work

Motivated by the problem of buying multiple products from
different web-stores, [3] modeled Internet shopping as an op-
timization problem, where a customer wants to buy a list of
products from a set of online stores at the minimum final price.
The authors showed that the problem is NP-hard in the strong
sense and designed a set of polynomial time algorithms for
special cases of the problem. During previous research dif-
ferent versions (specializations) of the Internet shopping prob-
lem were examined [5]. For example, due to NP-hardness of
the optimization problem, [9] designed a heuristic solution to
optimize the shopping basket and evaluate it for the customer
basket optimization problem to make it applicable for solving
complex shopping cart optimization in on-line applications.
Moreover, it is proven that the problem is not approximable
in polynomial time [3]. The archetype of the presented prob-
lem was a web-based customer assistance system dedicated to
pharmacy shopping that helps customers find shops in a geo-
graphically defined range where the entire shopping list could
be realized at the best total price [10]. For the general discus-
sion on the e-commerce problems development and the way it
evolves over last years one should refers to the situation in the
recent past [11].

It is worth noting that there are some similarities be-
tween ISOP and the well-known Facility Location Problem
(FLP) [12]. The main characteristics of the FLP are space,
the metric, given customer locations and given or not given
positions for facility locations. A traditional FLP is to open a
number of facilities in arbitrary positions of the space (contin-
uous problem) or in a subset of given positions (discrete prob-
lem) and to assign customers to the opened facilities so that the
sum of opening costs and costs related to the distances between
customer locations and their corresponding facility locations is
minimized.

Discussions of FLPs can be found in [13, 14, 15, 16]. The
traditional discrete FLP is NP-hard [17] in the strong sense.
Note, however, that the general problem ISOP with price dis-
counts cannot be treated as a traditional discrete FLP because
there is no evident motivation for a discount on the cumulative
cost in the sense of distances. The important point to note here
is that this problem and ISOP are not each other’s sub-cases,
while the traditional discrete FLP is a special case of any of
these problems.

Looking at the Internet Shopping Optimization Problem
considering price discounts one can notice some similarities
with Total Quantity Discount Problem (TQD) [8]. To show
the similarities and most of all to show distinct differences we
should enclose mathematical formulation of TQD. One can de-
fine G as the set of m goods, indexed by k, and S as the set of n
suppliers, indexed by i. For each good k in G, dk as the amount
of good k to be procured is defined. To each supplier i in S
we associate a sequence of intervals Zi = {0,1, . . . ,maxi}, in-
dexed by j. Furthermore, for each supplier i ∈ S and interval
j ∈ Zi, li j and ui j define the minimum and maximum number
of goods respectively that needs to be ordered from supplier
i to be in interval j. Finally, for each supplier i ∈ S, for each

interval j ∈ Zi and each good k ∈ G, let ci jk be the price for one
item of good k purchased from supplier i in its j-th interval.
Similarities between ISOP with price discounts and TQD prob-
lem can be noticed if we threat products to buy M as goods G
(dk is amount of the same good k) and shops N as suppliers
S. Piecewise discounting function f j for shop j will be associ-
ated with a sequence of intervals Zi for supplier i. Price pi j of
product i from shop j can be shown as price cik for one item of
good k purchased from supplier i. Piecewise function for shop
j applied to a product price f j(pi j) should be treaten as ci jk -
price for one item of good k purchased from supplier i in its
j-th interval. However ISOP includes shipping costs that are
specific to each shops. This feature makes ISOP new enhanced
version of the TQD problem.
It is worth pointing out that the decision version of the TQD
problem is strongly NP-complete. Moreover, no polynomial-
time approximation algorithm with constant worst-case ratio
exists for the TQD problem (unless P = N P). More in-
formation on many variations on TQD (i.e. permissible delay
in payments in [18]), solutions, exact algorithms [19] can be
found in the literature [8, 20, 21].

4. Extended Model
In this section we present a known model of the optimization
problem, Internet Shopping Optimization Problem considering
delivery costs and including price discounts (ISOPwD) [5]. Its
mathematical program can be written as follows:

min
m

∑
i=1

n

∑
j=1

f j(pi jxi j)+
n

∑
j=1

d jy j,

s.t.
n

∑
j=1

xi j = 1, i = 1, . . . ,m,

0 ≤ xi j ≤ y j, i = 1, . . . ,m, j = 1, . . . ,n,

xi j ∈ {0,1}, y j ∈ {0,1}, i = 1, . . . ,m, j = 1, . . . ,n.

were a customer would like to buy products from a given set
M = {1, . . . ,m} in a given set of Internet shops N = {1, . . . ,n}
at the minimum total final price. There are the following given
parameters and decision variables:

d j - delivery price of all products from shop j,
y j - usage indicator for shop j,
pi j - standard price of product i in shop j,
xi j - usage indicator for product i in shop j,
f j(Tj) - piecewise function (discounting) for final price of
all products T bought in shop j.

A piecewise function model is non-linear according to its
original nature and it is why we are using non-linear model
here.

PROPOSITION 1. In [3] ISOP is demonstrated to be part
of NP-Hard problems. The ISOP can be reduced to the basic
ISOPwD problem.

STATEMENT 1. The ISOPwD is NP-Hard in the strong
sense.

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

,

where a customer wants to buy products from a given set
M = f1, …, mg in a given set of Internet shops N = f1, …, ng
at the minimum total final price. There are the following given
parameters and decision variables:
 dj – delivery price of all products from shop j,
 yj – usage indicator for shop j,
 pij – standard price of product i in shop j,
 xij – usage indicator for product i in shop j,
 f j (Tj) – piecewise function (discounting) for final price of

all products T bought in shop j.

 - 10.1515/bpasts-2016-0056
Downloaded from De Gruyter Online at 09/27/2016 01:29:57PM

via Gdansk University of Technology

508 Bull. Pol. Ac.: Tech. 64(3) 2016

J. Musial et al.

A piecewise function model is non-linear according to its
original nature and it is why we are using non-linear model here.

Proposition 1. In [3] ISOP is demonstrated to be part of
NP- Hard problems. The ISOP can be reduced to the basic
ISOPwD problem.

Statement 1. The ISOPwD is NP-Hard in the strong sense.

Basic ISOP problem (known as strongly NP-hard) can be
transformed to the ISOPwD considering the sub-case for
which all piecewise functions (discounts for each shop n 2 N)
equals fj(Tj) = Tj. Therefore the extended ISOPwD problem
is NP-hard in the strong sense.

5. Proposed algorithms

The ISOPwD is strongly NP-hard. Moreover, to our best knowl-
edge it cannot be reduced to one of the known problems. There-
fore, it is apparent right to propose heuristic solution, simple
efficient greedy algorithms [5, 22] that use local knowledge
and do not allow any backtracking for efficiency purpose. It
is worth to notice that the greedy algorithm does not always
yield optimal solutions. However, it could provide an optimal
or close to optimal solution using much less resources and time
than other optimal working algorithms (i.e., full scan).

5.1. Greedy algorithm. In the first heuristic for the ISOPwD,
denoted as Greedy [9], products are considered in a certain or-
der. The algorithm is run for various product orders and the
best solution found is presented to the customer. Let us consid-
er that the products are sorted in an ascending order 1, …, m.
Values of the total delivery for each store are initially set as dj,
j = f1, …, n. yj is the shipping indicator. The standard price for
each product i in shop j is set as pij. In iteration i of Greedy,
product i is selected in its eligible shop j with minimum val-
ue T + fj(pij) + dj, and the corresponding T-value is re-set:
T = T + fj(pij) + dj. Afterwards, dj is set to 0.
Piecewise function fj(pij) returns value of product i after apply-
ing discount for shop j.

We observed that Greedy demonstrates very good perfor-
mance on the experimental data. However, it can provide a solu-
tion whose value is much worse than the optimum. One can
consider products and delivery prices in Table 2. The first experi-
mental computation results of Greedy can be found in [5] and [9].

For any product sequence algorithm Greedy selects all prod-
ucts in shop 1, which costs nW ¡ ε, while an optimal solution
is to select all products in shop 2, which costs W.

5.2. Algorithm with forecasting. Observed weak points of
Greedy led to the creation of a new, upgraded version. The lo-
cal step choice analysis is more complicated than in the basic
Greedy. The forecasting method is looking for a step ahead
[4]. Therefore, technically this algorithm is not a strict greedy
algorithm. Sometimes it proposes a current solution which is
not optimal for the current step (local solution) but for a better
overall solution in hope of providing an optimal global solution.

In order to hedge against the instances similar to that in
Table 2, we developed another heuristic algorithm, denoted as
Forecasting. The main idea is to check the situation one step
ahead (forecasting bad situations). From the first step to the
penultimate, the algorithm calculates “rating” to pick an eligible
shop j for product i. Instead for looking for a local optimum it
looks one step ahead (which prevents a bad case from occur-
ring) and calculates the choosing factor as T + 

J. Musial et al.

Table 2
Price structure for poor performance of Greedy

prod 1 prod 2 ... prod n delivery

shop 1 W − ε W − ε ... W − ε 0
shop 2 0 0 ... 0 W

Proof. Basic ISOP problem (known as strongly NP-hard) can
be transformed to the ISOPwD considering the sub-case for
which all piecewise functions (discounts for each shop n ∈ N)
equals f j(Tj) = Tj. Therefore the extended ISOPwD problem
is NP-hard in the strong sense.

5. Proposed Algorithms
The ISOPwD is strongly NP-hard. Moreover, to our best
knowledge it cannot be reduced to one of the known prob-
lems. Therefore, it is apparent right to propose heuristic so-
lution, simple efficient greedy algorithms [5, 22] that use local
knowledge and do not allow any backtracking for efficiency
purpose. It is worth to notice that the greedy algorithm does
not always yield optimal solutions. However, it could provide
an optimal or close to optimal solution using much less re-
sources and time than other optimal working algorithms (i.e.,
full scan).

5.1. Greedy algorithm - Greedy. In the first heuristic for the
ISOPwD, denoted as Greedy [9], products are considered in a
certain order. The algorithm is run for various product orders
and the best solution found is presented to the customer. Let
us consider that the products are sorted in an ascending order
1, . . . ,m. Values of the total delivery for each store are initially
set as d j , j = 1, . . . ,n. y j is the shipping indicator. The stan-
dard price for each product i in shop j is set as pi j. In iteration i
of Greedy, product i is selected in its eligible shop j with min-
imum value T + f j(pi j)+d j, and the corresponding T -value is
re-set: T = T + f j(pi j)+d j. Afterwards, d j is set to 0.
Piecewise function f j(pi j) returns value of product i after ap-
plying discount for shop j.

We observed that Greedy demonstrates very good perfor-
mance on the experimental data. However, it can provide a so-
lution whose value is much worse than the optimum. One can
consider products and delivery prices in Table 2. The first ex-
perimental computation results of Greedy can be found in [5]
and [9].

For any product sequence algorithm Greedy selects all prod-
ucts in shop 1, which costs nW − ε , while an optimal solution
is to select all products in shop 2, which costs W .

5.2. Algorithm with forecasting - Forecasting. Observed
weak points of Greedy led to the creation of a new, upgraded
version. The local step choice analysis is more complicated
than in the basic Greedy. The forecasting method is looking
for a step ahead [4]. Therefore, technically this algorithm is
not a strict greedy algorithm. Sometimes it proposes a current
solution which is not optimal for the current step (local solu-
tion) but for a better overall solution in hope of providing an
optimal global solution.

In order to hedge against the instances similar to that in
Table 2, we developed another heuristic algorithm, denoted
as Forecasting. The main idea is to check the situation one
step ahead (forecasting bad situations). From the first step
to the penultimate, the algorithm calculates "rating" to pick
an eligible shop j for product i. Instead for looking for a
local optimum it looks one step ahead (which prevents a bad
case from occurring) and calculates the choosing factor as
Tj +

f j(pi j+pi j+1)+d j
2 for every shop j and picking the one

with the lowest calculated value. In each following step
next product i is taken into account, i = i + 1. T is set as
T = T + f j(pi j)+d j. Afterwards, d j is set to 0.
The last step of the algorithm works in a different way
(forecast could not work beyond the set of products i). The
last product is selected in its eligible shop j with minimum
value T + f j(pi j).

Piecewise function f j(pi j + pi j+1) returns total costs of
products i and i+1 after applying discount for shop j.

5.3. Cellular Processing Algorithm - Cellular. The cellular
processing based algorithm is a new pseudo-parallel optimiza-
tion approach [23]. It includes multiple processing cells that
explore different regions of the search space. Each process-
ing cell can be implemented using population or search based
heuristics or an hybridization of them. The main idea and the
principle of the algorithm is to split a sequential algorithm into
several pseudo-parallel processing (i.e., cell) modules, so that
each cell can explore different regions of the search space. The
main feature of the new approach is that the iterative verifi-
cation of the stagnation conditions prevents wasting time on
unnecessary tasks.

We design an new algorithm based on a pseudo-parallel op-
timization approach introduced by [23]. The new algorithm we
design is a cellular processing approach, which includes mul-
tiple processing cells that helps to explore different regions of
the search optimization space.

The components of the algorithm are a pool of candidate
solutions, generated either by a constructive or a random algo-
rithm and a cell set that is simple, independent, self-contained
and applied to work with the subset of candidate solutions that
were given to solve. This process continues until the cells stall
all solutions in their local optimum. After that, the solutions
return to the pool, and the cells share information with each
other in order to escape from the local optimum and continue
the search for the global optimum.

In this work we generated the candidate solutions at ran-
dom. We designed an Iterated Local Search algorithm (ILS)
as the core of the cells. This choice was made due to the sim-
plicity and high configurability of this structure, which allows
it to be highly scalable and to run in a variety of hardware con-
figurations. Moreover, the ILS algorithm is a trajectory-based
metaheuristic that can be seen as a straight-forward, yet pow-
erful technique for extending simple local search algorithms.

The algorithm starts off by generating an initial solution.
Then, a local search process is applied to the candidate solu-
tion. After that, following an iteration based approach, it seeks

4 Bull. Pol. Ac.: Tech. XX(Y) 2016

for every shop j and picking the one with the lowest calculated
value. In each following step next product i is taken into ac-
count, i = i + 1. T is set as T = T + fj(pij) + dj. Afterwards, dj
is set to 0.
The last step of the algorithm works in a different way (forecast
could not work beyond the set of products i). The last product
is selected in its eligible shop j with minimum value T + fj(pij).

Piecewise function fj(pij + pij+1) returns total costs of prod-
ucts i and i + 1 after applying discount for shop j.

5.3. Cellular processing algorithm. The cellular processing
based algorithm is a new pseudo-parallel optimization ap-
proach [23]. It includes multiple processing cells that explore
different regions of the search space. Each processing cell can
be implemented using population or search based heuristics
or an hybridization of them. The main idea and the principle
of the algorithm is to split a sequential algorithm into several
pseudo-parallel processing (i.e., cell) modules, so that each cell
can explore different regions of the search space. The main
feature of the new approach is that the iterative verification
of the stagnation conditions prevents wasting time on unnec-
essary tasks.

We design an new algorithm based on a pseudo-parallel op-
timization approach introduced by [23]. The new algorithm we
design is a cellular processing approach, which includes mul-
tiple processing cells that helps to explore different regions of
the search optimization space.

The components of the algorithm are a pool of candidate
solutions, generated either by a constructive or a random algo-
rithm and a cell set that is simple, independent, self-contained
and applied to work with the subset of candidate solutions that
were given to solve. This process continues until the cells stall
all solutions in their local optimum. After that, the solutions
return to the pool, and the cells share information with each
other in order to escape from the local optimum and continue
the search for the global optimum.

In this work we generated the candidate solutions at random.
We designed an iterated local search algorithm (ILS) as the core
of the cells. This choice was made due to the simplicity and
high configurability of this structure, which allows it to be high-
ly scalable and to run in a variety of hardware configurations.

Table 2
Price structure for poor performance of Greedy

prod 1 prod 2 … prod n delivery

shop 1 W – ε W – ε … W – ε 0

shop 2 0 0 … 0 W

 - 10.1515/bpasts-2016-0056
Downloaded from De Gruyter Online at 09/27/2016 01:29:57PM

via Gdansk University of Technology

509Bull. Pol. Ac.: Tech. 64(3) 2016

Algorithms solving the Internet shopping optimization problem with price discounts

Moreover, the ILS algorithm is a trajectory-based metaheuristic
that can be seen as a straight-forward, yet powerful technique
for extending simple local search algorithms.

The algorithm starts off by generating an initial solution.
Then, a local search process is applied to the candidate solu-
tion. After that, following an iteration based approach, it seeks
to improve the solutions from one iteration to the next. At each
iteration, a perturbation of the obtained local optimum is carried
out. The perturbation mechanism introduces a modification to
a given candidate solution to allow the search process to escape
from a local optimum. A local search is applied to the perturbed
solution. The new solution is then evaluated and accepted as
the new current solution under some conditions. The algorithm
finishes when the termination condition is met.

The proposed local search algorithm comprises the follow-
ing methods:
● The criticalElements obtains a list of elements that may be

promising in finding a better search region. This case com-
prises products that are more expensive and are bought only
in one store, so the heuristic favors elements that are cheaper
and are bought in the same store.

● The evaluateChange method explores the entire neighbor-
hood of search to find the permutation that improves the
current solution, but without perturbing it, and returns the
store in which it is more convenient to purchase the product
under consideration.

● The makeChange makes the proposed change given by eval-
uateChange.

● Once the change is performed, the applyDiscount method
applies the discounts on the price of the products (piecewise
function).
The number of cells used in this configuration was estab-

lished to five, each one starting from a different region of the
search space and performing the process described beforehand.
The communication, once all were stagnated, was done by com-
paring the quality of the solutions obtained by each processing
cell.

The stagnation was determined by the number of consec-
utive iterations without improvement, that in the case of each
cell was established to ten iterations and for the whole process
to five iterations without improvement.

Coded algorithm was carefully designed and build especial-
ly to solve ISOPwD problem taking into account its specific
and original nature. The algorithm is original and created from
the basis especially for this purpose.

It is natural to try to relate Cellular to Hyper heuristic. How-
ever, it is worth pointing out that Cellular differs from the Hyper
heuristic approach in that each processing cell has complete
knowledge on the problem that is being solved, as opposed to
the Hyper heuristic, where exists a domain barrier among the
controller and the low level heuristics. Another main difference
resides in that the processing cells are adapted and tailored
to the problem that is being solved, while the Hyper heuristic
depends on generic low level heuristics that can be applied to
a greater variety of optimization problems, according to Burke
et al. [24].

5.4. Minimum-minimum algorithm. The min-min algorithm
is commonly and widely used in the context of scheduling in-
dependent tasks in distributed computing to minimize the total
completion time of the tasks [25, 26]. One of the main advan-
tages of this approach is that in general is capable to obtain good
quality solutions with a relatively small computational cost, but
as it schedules those tasks or processes with minimum cost first,
it may result in an imbalanced solution [27]. [28] described
the process of the heuristic min-min approach. In this paper
we extended min-min to ISOPwD for the selection of a list of
products in a set of web-stores. The extended version is called
MinMin in this paper.

The process begins with the search of the product in the
list of unassigned products N, which minimizes the total cost
TC in the shopping cart among the different stores M, given
the cost of the product, Cij plus delivery cost, Di. In the case
of a tie, the product with the lower delivery cost is selected,
and if both stores have the same delivery cost, the product is
chosen randomly.

Once assigned, the total cost of the shopping cart is updated
with the selected product, and it is removed from the unassigned
product list N. The process continues until the unassigned prod-
uct list is empty.

5.5. Branch and bound algorithm. To calculate the optimal
solution, we designed a branch and bound algorithm [29].

The branch and bound (BB) algorithm starts off by calcu-
lating an upper bound (UB) employing the solution given by

Fig. 1. Algorithm Cellular-ILS

 - 10.1515/bpasts-2016-0056
Downloaded from De Gruyter Online at 09/27/2016 01:29:57PM

via Gdansk University of Technology

510 Bull. Pol. Ac.: Tech. 64(3) 2016

J. Musial et al.

the Cell Processing Algorithm and proceeds to branch the first
level of the search tree in the stack. Subsequently, the algorithm
pops the top element of the stack and evaluates the objective
value it would have if it were part of the current solution. If
the partial solution exceeds the limit given by the upper bound
(UB), the current branch is fathomed. Otherwise, if it were not
a leaf of the tree, the algorithm would pile up the following
elements within the stack. If it were a leaf, it would mean that
the current solution is better than the best global solution found
so far. Consequently it would update the upper bound with the
new value found.

This process continues as long as there are elements in the
stack, which means that the whole search tree has been ex-
plored. Founded upper bound is now considered as the opti-
mal solution of the instance being evaluated. We consider it
as a B&B model, even if it was implemented by ourselves, as
it follows the procedure described in the literature. Generating
the search tree and stopping further exploration where it’s not
possible to find a better solutions on a branch.

6. Computational experiments results

Computational experiments were performed and divided into
two groups (due to the computational complexity time) – a set
of experiments including BB exact algorithm and a set of exper-
iments without optimal solution as a comparison of all heuris-
tics to evaluate scalability issues by increasing instances’ size.

All algorithms were implemented in the PHP programming
language in its 5.2 version. The aim of using PHP was to easy
embed the algorithms in a website – to work in a conditions that
are similar to its future final version.

The experiments were carried out in an Apple MacBook
Pro, version 8.1 with an Intel processor running at 2.3 GHz,
two physical cores and two virtual for each one and 4 GB
DDR3 main memory at 1333 MHz. The experimentations were
made on a virtual machine running GNU/Linux Mint 11 on
a Mac OS X 10.7 host with two virtual cores assigned and 2 GB
of main memory.

6.1. World working model and instances generator. A chal-
lenging step in experimental research was to create a model,
which would be as close to real Internet shopping conditions
as possible. An experiment with real world data would be the
next step in research, which involves much more dialog with
the business community. We studied the relationship between
the competitive structure, advertising, prices and price disper-
sion over Internet stores. As a group of representative products
to be taken into account in our computational experiment we
chose books, because of their wide choice in web-stores and
frequency of purchase through this kind of shopping channel.
We used some information from [30]. It focuses mainly on elec-
tronic bookstores model definition, prices, acceptance factor,
retailer brand [31] and, what is important for the optimization
problem model definition, price dispersion. Moreover, we ana-
lyzed many Internet stores (i.e. Amazon, BarnesandNoble.com,
Borders.com, Buy.com, Booksamillion and top sellers among

Internet bookstores in Poland such as empik.com and merlin. pl)
to create our own model with instances generator as close to
reality as possible.

The working model was prepared as follows. In the
computational experiments we assume that n 2 f20, 40g,
m 2 f2,  3, …, 10, 15, …, 100g. For each pair (n,  m), 100 in-
stances were generated. In each instance, the following values
were randomly generated for all i and j in the corresponding
ranges. Delivery price: dj 2 f5,  10,  15,  20,  25,  30g, publish-
er’s recommended price of book i: ri 2 f5,  10,  15,  20,  25g, and
price of book i in bookstore j: pij 2 [aij,  bij], where aij ¸ 0.69rj,
bij ∙ 1.47rj, and the structure of intervals [aij,  bij] is prepared
as follows:

J. Musial et al.

bound with the new value found.
This process continues as long as there are elements in the

stack, which means that the whole search tree has been ex-
plored. Founded upper bound is now considered as the optimal
solution of the instance being evaluated.
We consider it as a B&B model, even if it was implemented
by ourselves, as it follows the procedure described in the lit-
erature. Generating the search tree and stopping further ex-
ploration where it’s not possible to find a better solutions on a
branch.

6. Computational experiments results
Computational experiments were performed and divided into
two groups (due to the computational complexity time) – a
set of experiments including BB exact algorithm and a set of
experiments without optimal solution as a comparison of all
heuristics to evaluate scalability issues by increasing instances’
size.

All algorithms were implemented in the PHP programming
language in its 5.2 version. The aim of using PHP was to easy
embed the algorithms in a website – to work in a conditions
that are similar to its future final version.

The experiments were carried out in an Apple MacBook Pro,
version 8.1 with an Intel processor running at 2.3 GHz, two
physical cores and two virtual for each one and 4 GB DDR3
main memory at 1333 MHz. The experimentations were made
on a virtual machine running GNU/Linux Mint 11 on a Mac
OS X 10.7 host with two virtual cores assigned and 2 GB of
main memory.

6.1. World working model and instances generator. A
challenging step in experimental research was to create a
model, which would be as close to real Internet shopping con-
ditions as possible. An experiment with real world data would
be the next step in research, which involves much more dialog
with the business community. We studied the relationship be-
tween the competitive structure, advertising, prices and price
dispersion over Internet stores. As a group of representative
products to be taken into account in our computational exper-
iment we chose books, because of their wide choice in web-
stores and frequency of purchase through this kind of shop-
ping channel. We used some information from [30]. It focuses
mainly on electronic bookstores model definition, prices, ac-
ceptance factor, retailer brand [31] and, what is important for
the optimization problem model definition, price dispersion.
Moreover, we analyzed many Internet stores (i.e. Amazon,
BarnesandNoble.com, Borders.com, Buy.com, Booksamillion
and top sellers among Internet bookstores in Poland such as
empik.com and merlin.pl) to create our own model with in-
stances generator as close to reality as possible.

The working model was prepared as follows. In the com-
putational experiments we assume that n ∈ {20,40}, m ∈
{2,3, . . . ,10,15, . . . ,100}. For each pair (n,m), 100 instances
were generated. In each instance, the following values were
randomly generated for all i and j in the corresponding ranges.
Delivery price: d j ∈ {5,10,15,20,25,30}, publisher’s recom-

mended price of book i: ri ∈ {5,10,15,20,25}, and price of
book i in bookstore j: pi j ∈ [ai j,bi j], where ai j ≥ 0.69r j,
bi j ≤ 1.47r j, and the structure of intervals [ai j,bi j] is prepared
as follows:

[32%]
minimum

minimum+ (median−minimum)
4

[9%]

minimum+ (median−minimum)
2

[9%]

minimum+ (median−minimum)
1.33

[8%]
median

[13%]

median+ (maximum−median)
4

[6%]

median+ (maximum−median)
2

[11%]

median+ (maximum−median)
1.33

[12%]
maximum

where minimum = 0.69r and maximum = 1.47r.

Based on real world observation the following discounting
function was proposed.

f (x) =

x if x ≤ 25,
0.95x if 25 < x ≤ 50,
0.90x if 50 < x ≤ 100,
0.85x if 100 < x ≤ 200,
0.80x if 200 < x.

This kind of advertisement is well-known and very often
used by stores / sellers. The more money you spend the more
discount you can achieve.

6.2. A set of experiments including Branch and Bound al-
gorithm. The first group of experiments is the one in which
the optimal solutions obtained by the exact BB algorithm were
compared to two state-of-the-art heuristic algorithms: Greedy,
Forecasting, and two newly developed algorithms: Cellular
and MinMin (for the ISOPwD). In these examples n ∈ {20},
m ∈ {2,3,4,5,6,7,8,9,10}, and discounts follow the proposed
piecewise discounting function. For each pair (n,m), 100 in-
stances were generated using the information in subsection 6.1.
The number of instances with optimal solutions computed by
BB is equal to 900.

The algorithms were compared using three metrics: an ap-
proximation factor, the run time spent by each heuristic to com-
pute a solution, and the dispersion analysis based on the stan-
dard deviation. The approximation factor of a heuristic is de-
fined as ρ = F(X)

F(X)∗ , where F(X) represents the solution found
by a heuristic and F(X)∗ denotes the optimal solution.

Figure 2 depicts the average solution of the aggregate values

6 Bull. Pol. Ac.: Tech. XX(Y) 2016

where minimum = 0.69r and maximum = 1.47r.

Based on real world observation the following discounting
function was proposed.

J. Musial et al.

bound with the new value found.
This process continues as long as there are elements in the

stack, which means that the whole search tree has been ex-
plored. Founded upper bound is now considered as the optimal
solution of the instance being evaluated.
We consider it as a B&B model, even if it was implemented
by ourselves, as it follows the procedure described in the lit-
erature. Generating the search tree and stopping further ex-
ploration where it’s not possible to find a better solutions on a
branch.

6. Computational experiments results
Computational experiments were performed and divided into
two groups (due to the computational complexity time) – a
set of experiments including BB exact algorithm and a set of
experiments without optimal solution as a comparison of all
heuristics to evaluate scalability issues by increasing instances’
size.

All algorithms were implemented in the PHP programming
language in its 5.2 version. The aim of using PHP was to easy
embed the algorithms in a website – to work in a conditions
that are similar to its future final version.

The experiments were carried out in an Apple MacBook Pro,
version 8.1 with an Intel processor running at 2.3 GHz, two
physical cores and two virtual for each one and 4 GB DDR3
main memory at 1333 MHz. The experimentations were made
on a virtual machine running GNU/Linux Mint 11 on a Mac
OS X 10.7 host with two virtual cores assigned and 2 GB of
main memory.

6.1. World working model and instances generator. A
challenging step in experimental research was to create a
model, which would be as close to real Internet shopping con-
ditions as possible. An experiment with real world data would
be the next step in research, which involves much more dialog
with the business community. We studied the relationship be-
tween the competitive structure, advertising, prices and price
dispersion over Internet stores. As a group of representative
products to be taken into account in our computational exper-
iment we chose books, because of their wide choice in web-
stores and frequency of purchase through this kind of shop-
ping channel. We used some information from [30]. It focuses
mainly on electronic bookstores model definition, prices, ac-
ceptance factor, retailer brand [31] and, what is important for
the optimization problem model definition, price dispersion.
Moreover, we analyzed many Internet stores (i.e. Amazon,
BarnesandNoble.com, Borders.com, Buy.com, Booksamillion
and top sellers among Internet bookstores in Poland such as
empik.com and merlin.pl) to create our own model with in-
stances generator as close to reality as possible.

The working model was prepared as follows. In the com-
putational experiments we assume that n ∈ {20,40}, m ∈
{2,3, . . . ,10,15, . . . ,100}. For each pair (n,m), 100 instances
were generated. In each instance, the following values were
randomly generated for all i and j in the corresponding ranges.
Delivery price: d j ∈ {5,10,15,20,25,30}, publisher’s recom-

mended price of book i: ri ∈ {5,10,15,20,25}, and price of
book i in bookstore j: pi j ∈ [ai j,bi j], where ai j ≥ 0.69r j,
bi j ≤ 1.47r j, and the structure of intervals [ai j,bi j] is prepared
as follows:

[32%]
minimum

minimum+ (median−minimum)
4

[9%]

minimum+ (median−minimum)
2

[9%]

minimum+ (median−minimum)
1.33

[8%]
median

[13%]

median+ (maximum−median)
4

[6%]

median+ (maximum−median)
2

[11%]

median+ (maximum−median)
1.33

[12%]
maximum

where minimum = 0.69r and maximum = 1.47r.

Based on real world observation the following discounting
function was proposed.

f (x) =

x if x ≤ 25,
0.95x if 25 < x ≤ 50,
0.90x if 50 < x ≤ 100,
0.85x if 100 < x ≤ 200,
0.80x if 200 < x.

This kind of advertisement is well-known and very often
used by stores / sellers. The more money you spend the more
discount you can achieve.

6.2. A set of experiments including Branch and Bound al-
gorithm. The first group of experiments is the one in which
the optimal solutions obtained by the exact BB algorithm were
compared to two state-of-the-art heuristic algorithms: Greedy,
Forecasting, and two newly developed algorithms: Cellular
and MinMin (for the ISOPwD). In these examples n ∈ {20},
m ∈ {2,3,4,5,6,7,8,9,10}, and discounts follow the proposed
piecewise discounting function. For each pair (n,m), 100 in-
stances were generated using the information in subsection 6.1.
The number of instances with optimal solutions computed by
BB is equal to 900.

The algorithms were compared using three metrics: an ap-
proximation factor, the run time spent by each heuristic to com-
pute a solution, and the dispersion analysis based on the stan-
dard deviation. The approximation factor of a heuristic is de-
fined as ρ = F(X)

F(X)∗ , where F(X) represents the solution found
by a heuristic and F(X)∗ denotes the optimal solution.

Figure 2 depicts the average solution of the aggregate values

6 Bull. Pol. Ac.: Tech. XX(Y) 2016

This kind of advertisement is well-known and very often
used by sellers. The more money is spent, the more discount
one can achieve.

6.2. A set of experiments including branch and bound al-
gorithm. The first group of experiments is the one in which
the optimal solutions obtained by the exact BB algorithm were
compared to two state-of-the-art heuristic algorithms: Greedy,
Forecasting, and two newly developed algorithms: Cellular

 - 10.1515/bpasts-2016-0056
Downloaded from De Gruyter Online at 09/27/2016 01:29:57PM

via Gdansk University of Technology

511Bull. Pol. Ac.: Tech. 64(3) 2016

Algorithms solving the Internet shopping optimization problem with price discounts

and MinMin (for the ISOPwD). In these examples n 2 f20g,
m 2 f2, 3, 4, 5, 6, 7, 8, 9, 10g, and discounts follow the proposed
piecewise discounting function. For each pair (n, m), 100 in-
stances were generated using the information in subsection
6.1. The number of instances with optimal solutions computed
by BB is equal to 900.

The algorithms were compared using three metrics: an
approximation factor, the run time spent by each heuristic to
compute a solution, and the dispersion analysis based on the
standard deviation. The approximation factor of a heuristic is
defined as ρ = 

J. Musial et al.

bound with the new value found.
This process continues as long as there are elements in the

stack, which means that the whole search tree has been ex-
plored. Founded upper bound is now considered as the optimal
solution of the instance being evaluated.
We consider it as a B&B model, even if it was implemented
by ourselves, as it follows the procedure described in the lit-
erature. Generating the search tree and stopping further ex-
ploration where it’s not possible to find a better solutions on a
branch.

6. Computational experiments results
Computational experiments were performed and divided into
two groups (due to the computational complexity time) – a
set of experiments including BB exact algorithm and a set of
experiments without optimal solution as a comparison of all
heuristics to evaluate scalability issues by increasing instances’
size.

All algorithms were implemented in the PHP programming
language in its 5.2 version. The aim of using PHP was to easy
embed the algorithms in a website – to work in a conditions
that are similar to its future final version.

The experiments were carried out in an Apple MacBook Pro,
version 8.1 with an Intel processor running at 2.3 GHz, two
physical cores and two virtual for each one and 4 GB DDR3
main memory at 1333 MHz. The experimentations were made
on a virtual machine running GNU/Linux Mint 11 on a Mac
OS X 10.7 host with two virtual cores assigned and 2 GB of
main memory.

6.1. World working model and instances generator. A
challenging step in experimental research was to create a
model, which would be as close to real Internet shopping con-
ditions as possible. An experiment with real world data would
be the next step in research, which involves much more dialog
with the business community. We studied the relationship be-
tween the competitive structure, advertising, prices and price
dispersion over Internet stores. As a group of representative
products to be taken into account in our computational exper-
iment we chose books, because of their wide choice in web-
stores and frequency of purchase through this kind of shop-
ping channel. We used some information from [30]. It focuses
mainly on electronic bookstores model definition, prices, ac-
ceptance factor, retailer brand [31] and, what is important for
the optimization problem model definition, price dispersion.
Moreover, we analyzed many Internet stores (i.e. Amazon,
BarnesandNoble.com, Borders.com, Buy.com, Booksamillion
and top sellers among Internet bookstores in Poland such as
empik.com and merlin.pl) to create our own model with in-
stances generator as close to reality as possible.

The working model was prepared as follows. In the com-
putational experiments we assume that n ∈ {20,40}, m ∈
{2,3, . . . ,10,15, . . . ,100}. For each pair (n,m), 100 instances
were generated. In each instance, the following values were
randomly generated for all i and j in the corresponding ranges.
Delivery price: d j ∈ {5,10,15,20,25,30}, publisher’s recom-

mended price of book i: ri ∈ {5,10,15,20,25}, and price of
book i in bookstore j: pi j ∈ [ai j,bi j], where ai j ≥ 0.69r j,
bi j ≤ 1.47r j, and the structure of intervals [ai j,bi j] is prepared
as follows:

[32%]
minimum

minimum+ (median−minimum)
4

[9%]

minimum+ (median−minimum)
2

[9%]

minimum+ (median−minimum)
1.33

[8%]
median

[13%]

median+ (maximum−median)
4

[6%]

median+ (maximum−median)
2

[11%]

median+ (maximum−median)
1.33

[12%]
maximum

where minimum = 0.69r and maximum = 1.47r.

Based on real world observation the following discounting
function was proposed.

f (x) =

x if x ≤ 25,
0.95x if 25 < x ≤ 50,
0.90x if 50 < x ≤ 100,
0.85x if 100 < x ≤ 200,
0.80x if 200 < x.

This kind of advertisement is well-known and very often
used by stores / sellers. The more money you spend the more
discount you can achieve.

6.2. A set of experiments including Branch and Bound al-
gorithm. The first group of experiments is the one in which
the optimal solutions obtained by the exact BB algorithm were
compared to two state-of-the-art heuristic algorithms: Greedy,
Forecasting, and two newly developed algorithms: Cellular
and MinMin (for the ISOPwD). In these examples n ∈ {20},
m ∈ {2,3,4,5,6,7,8,9,10}, and discounts follow the proposed
piecewise discounting function. For each pair (n,m), 100 in-
stances were generated using the information in subsection 6.1.
The number of instances with optimal solutions computed by
BB is equal to 900.

The algorithms were compared using three metrics: an ap-
proximation factor, the run time spent by each heuristic to com-
pute a solution, and the dispersion analysis based on the stan-
dard deviation. The approximation factor of a heuristic is de-
fined as ρ = F(X)

F(X)∗ , where F(X) represents the solution found
by a heuristic and F(X)∗ denotes the optimal solution.

Figure 2 depicts the average solution of the aggregate values

6 Bull. Pol. Ac.: Tech. XX(Y) 2016

, where F(X) represents the solution found
by a heuristic and F(X)¤ denotes the optimal solution.

Figure 2 depicts the average solution of the aggregate values
of the approximation factor.

rithms. However, the algorithm is quite stable in quality, there-
fore for a bigger number of products it provides better solutions
than Greedy and Forecasting. The algorithm was able to find
the optimal solution of 20% of the instances.

If one is looking solely for the quality of solutions the un-
disputed leader among algorithms is Cellular. Using this algo-
rithm the customer is able to save 5.88% more of the total cost
than using MinMin, 6.3% and 6.64% more than Greedy and
Forecasting, respectively.

The performance of Cellular is as expected given the search
iterative process and the iterative verification of the stagnation
conditions to escape from local optimal solutions different than
the constructive procedure of the rest of the developed algo-
rithms.

Figure 3 shows the results considering dispersion (includ-
ing the optimal solution). Each point represents the standard
deviation value (deviation around optimum value) from 100
computational tests for 20 shops, where every value for each
test is presented as correlation of the result to the optimum
(

Algorithms Solving the Internet Shopping Optimization Problem with Price Discount

of the approximation factor.

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 2 3 4 5 6 7 8 9 10

A
p

p
ro

x
im

a
ti

o
n

 F
a

ct
o

r

Products

20 Shops

Greedy
Forecasting

Cellular
MinMin

BB

Fig. 2. Algorithm results comparison - experiment with 20 shops (in-
cluding the optimal solution). The approximation factor is ρ =

F(X)
F(X)∗

,
where F(X) represents the solution found by a heuristic and F(X)∗

denotes the optimal solution.

Among all heuristics, Cellular provides the best quality of
solutions (closest to the optimum), regardless the size of the
instances. In the worst case, the solution proposed by this al-
gorithm was merely 1.47% more expensive than the cheapest
one. For many instances Cellular algorithm computes the opti-
mal solution. Cellular computed the optimal solution for 62%
of the instances. It is worth noting that the algorithm is very
stable as regards to the quality of solutions (for most cases the
solution is between 1.24% - 1.47% worse than optimum).
Both Greedy and Forecasting algorithms provide similar qual-
ity of solutions (for a lower number of products m, the latter
was better and for a higher number of products m > 5 the for-
mer outperformed Forecasting). Moreover, it is easily notice-
able that the quality of solution degrades with the increasing
number of products m. Greedy was able to find the optimal
solution for 6% of the instances and Forecasting computed the
optimal solutions for 7% of the instances.
The last heuristic algorithm - MinMin provides the worst so-
lutions for a lower number of products regarding the rest of
algorithms. However, the algorithm is quite stable in quality,
therefore for a bigger number of products it provides better so-
lutions than Greedy and Forecasting. The algorithm was able
to find the optimal solution of 20% of the instances.

If one is looking solely for the quality of solutions the undis-
puted leader among algorithms is Cellular. Using this algo-
rithm the customer is able to save 5.88% more of the total cost
than using MinMin, 6.3% and 6.64% more than Greedy and
Forecasting, respectively.

The performance of Cellular is as expected given the search
iterative process and the iterative verification of the stagnation
conditions to escape from local optimal solutions different than
the constructive procedure of the rest of the developed algo-
rithms.

Figure 3 shows the results considering dispersion (including
the optimal solution). Each point represents the standard devi-
ation value (deviation around optimum value) from 100 com-

putational tests for 20 shops, where every value for each test
is presented as correlation of the result to the optimum (Greedy

BB ,
Forecasting

BB , Cellular
BB , MinMin

BB). Higher standard deviation means
more unstable work (big difference in distance from the opti-
mal solution) over 100 tests from a given instance (sometimes
optimum or close to, sometimes quite far from it). As a refer-
ence value the BB algorithm results were used, as it computes
the exact solution. In each cell the standard deviation value is
presented for the same instance of n shops and m products for
100 computational tests. It can provide us with very useful in-
formation on the stability of the algorithms’ results or the lack
thereof.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 2 3 4 5 6 7 8 9 10

S
ta

n
d

a
rd

 D
ev

ia
ti

o
n

Products

20 Shops

Greedy
Forecasting

Cellular
MinMin

Fig. 3. Algorithm standard deviation chart - experiment with 20 shops
(including the optimal solution).

Table 3 provides more detailed information which is repre-
sented by the coefficient of variation (CV) normalized mea-
sure (percentage value). Each cell represents the coefficient
of variation (CV) normalized measure (deviation around opti-
mum value) from 100 computational tests for 20 shops where
every value for each test is presented as a correlation of the
result to the optimum. A higher CV value means more unsta-
ble work (big difference in distance from the optimal solution)
over 100 test from a given instance (sometimes optimum or
close to, sometimes quite far from it). We used the results
of the BB algorithm as a reference value. In each cell the CV
value is presented for the same instance of n shops and m prod-
ucts for 100 computational tests.

An important factor to consider in the context of online
shopping is the run time needed by any algorithm to compute
a solution. Figure 4 displays the results regarding the compar-
ison of algorithms run time in microseconds [ms] (including
the optimal solution). Each cell represents the average value
from 100 computational tests for 20 shops.

For a low number of products (m ≤ 5) MinMin is the fastest
algorithm. It can be observed that when the number of prod-
ucts is bigger than five (m > 5), Greedy outperforms the rest
of algorithms. Differences between all algorithms are very sig-
nificant.

Run time execution for BB grows exponentially and it was
impossible to prepare experiments for a bigger number of

Bull. Pol. Ac.: Tech. XX(Y) 2016 7

 ,

Algorithms Solving the Internet Shopping Optimization Problem with Price Discount

of the approximation factor.

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 2 3 4 5 6 7 8 9 10

A
p

p
ro

x
im

a
ti

o
n

 F
a

ct
o

r

Products

20 Shops

Greedy
Forecasting

Cellular
MinMin

BB

Fig. 2. Algorithm results comparison - experiment with 20 shops (in-
cluding the optimal solution). The approximation factor is ρ =

F(X)
F(X)∗

,
where F(X) represents the solution found by a heuristic and F(X)∗

denotes the optimal solution.

Among all heuristics, Cellular provides the best quality of
solutions (closest to the optimum), regardless the size of the
instances. In the worst case, the solution proposed by this al-
gorithm was merely 1.47% more expensive than the cheapest
one. For many instances Cellular algorithm computes the opti-
mal solution. Cellular computed the optimal solution for 62%
of the instances. It is worth noting that the algorithm is very
stable as regards to the quality of solutions (for most cases the
solution is between 1.24% - 1.47% worse than optimum).
Both Greedy and Forecasting algorithms provide similar qual-
ity of solutions (for a lower number of products m, the latter
was better and for a higher number of products m > 5 the for-
mer outperformed Forecasting). Moreover, it is easily notice-
able that the quality of solution degrades with the increasing
number of products m. Greedy was able to find the optimal
solution for 6% of the instances and Forecasting computed the
optimal solutions for 7% of the instances.
The last heuristic algorithm - MinMin provides the worst so-
lutions for a lower number of products regarding the rest of
algorithms. However, the algorithm is quite stable in quality,
therefore for a bigger number of products it provides better so-
lutions than Greedy and Forecasting. The algorithm was able
to find the optimal solution of 20% of the instances.

If one is looking solely for the quality of solutions the undis-
puted leader among algorithms is Cellular. Using this algo-
rithm the customer is able to save 5.88% more of the total cost
than using MinMin, 6.3% and 6.64% more than Greedy and
Forecasting, respectively.

The performance of Cellular is as expected given the search
iterative process and the iterative verification of the stagnation
conditions to escape from local optimal solutions different than
the constructive procedure of the rest of the developed algo-
rithms.

Figure 3 shows the results considering dispersion (including
the optimal solution). Each point represents the standard devi-
ation value (deviation around optimum value) from 100 com-

putational tests for 20 shops, where every value for each test
is presented as correlation of the result to the optimum (Greedy

BB ,
Forecasting

BB , Cellular
BB , MinMin

BB). Higher standard deviation means
more unstable work (big difference in distance from the opti-
mal solution) over 100 tests from a given instance (sometimes
optimum or close to, sometimes quite far from it). As a refer-
ence value the BB algorithm results were used, as it computes
the exact solution. In each cell the standard deviation value is
presented for the same instance of n shops and m products for
100 computational tests. It can provide us with very useful in-
formation on the stability of the algorithms’ results or the lack
thereof.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 2 3 4 5 6 7 8 9 10

S
ta

n
d

a
rd

 D
ev

ia
ti

o
n

Products

20 Shops

Greedy
Forecasting

Cellular
MinMin

Fig. 3. Algorithm standard deviation chart - experiment with 20 shops
(including the optimal solution).

Table 3 provides more detailed information which is repre-
sented by the coefficient of variation (CV) normalized mea-
sure (percentage value). Each cell represents the coefficient
of variation (CV) normalized measure (deviation around opti-
mum value) from 100 computational tests for 20 shops where
every value for each test is presented as a correlation of the
result to the optimum. A higher CV value means more unsta-
ble work (big difference in distance from the optimal solution)
over 100 test from a given instance (sometimes optimum or
close to, sometimes quite far from it). We used the results
of the BB algorithm as a reference value. In each cell the CV
value is presented for the same instance of n shops and m prod-
ucts for 100 computational tests.

An important factor to consider in the context of online
shopping is the run time needed by any algorithm to compute
a solution. Figure 4 displays the results regarding the compar-
ison of algorithms run time in microseconds [ms] (including
the optimal solution). Each cell represents the average value
from 100 computational tests for 20 shops.

For a low number of products (m ≤ 5) MinMin is the fastest
algorithm. It can be observed that when the number of prod-
ucts is bigger than five (m > 5), Greedy outperforms the rest
of algorithms. Differences between all algorithms are very sig-
nificant.

Run time execution for BB grows exponentially and it was
impossible to prepare experiments for a bigger number of

Bull. Pol. Ac.: Tech. XX(Y) 2016 7

). Higher standard deviation
means more unstable work (big difference in distance from
the optimal solution) over 100 tests from a given instance
(sometimes optimum or close to, sometimes quite far from
it). As a reference value the BB algorithm results were used,
as it computes the exact solution. In each cell the standard
deviation value is presented for the same instance of n shops
and m products for 100 computational tests. It can provide us
with very useful information on the stability of the algorithms’
results or the lack thereof.

Table 3 provides more detailed information which is rep-
resented by the coefficient of variation (CV) normalized mea-
sure (percentage value). Each cell represents the coefficient of
variation (CV) normalized measure (deviation around optimum
value) from 100 computational tests for 20 shops where every
value for each test is presented as a correlation of the result to
the optimum. A higher CV value means more unstable work
(big difference in distance from the optimal solution) over 100

Fig. 2. Algorithm results comparison – experiment with 20 shops (in-
cluding the optimal solution). The approximation factor is ρ = 

J. Musial et al.

bound with the new value found.
This process continues as long as there are elements in the

stack, which means that the whole search tree has been ex-
plored. Founded upper bound is now considered as the optimal
solution of the instance being evaluated.
We consider it as a B&B model, even if it was implemented
by ourselves, as it follows the procedure described in the lit-
erature. Generating the search tree and stopping further ex-
ploration where it’s not possible to find a better solutions on a
branch.

6. Computational experiments results
Computational experiments were performed and divided into
two groups (due to the computational complexity time) – a
set of experiments including BB exact algorithm and a set of
experiments without optimal solution as a comparison of all
heuristics to evaluate scalability issues by increasing instances’
size.

All algorithms were implemented in the PHP programming
language in its 5.2 version. The aim of using PHP was to easy
embed the algorithms in a website – to work in a conditions
that are similar to its future final version.

The experiments were carried out in an Apple MacBook Pro,
version 8.1 with an Intel processor running at 2.3 GHz, two
physical cores and two virtual for each one and 4 GB DDR3
main memory at 1333 MHz. The experimentations were made
on a virtual machine running GNU/Linux Mint 11 on a Mac
OS X 10.7 host with two virtual cores assigned and 2 GB of
main memory.

6.1. World working model and instances generator. A
challenging step in experimental research was to create a
model, which would be as close to real Internet shopping con-
ditions as possible. An experiment with real world data would
be the next step in research, which involves much more dialog
with the business community. We studied the relationship be-
tween the competitive structure, advertising, prices and price
dispersion over Internet stores. As a group of representative
products to be taken into account in our computational exper-
iment we chose books, because of their wide choice in web-
stores and frequency of purchase through this kind of shop-
ping channel. We used some information from [30]. It focuses
mainly on electronic bookstores model definition, prices, ac-
ceptance factor, retailer brand [31] and, what is important for
the optimization problem model definition, price dispersion.
Moreover, we analyzed many Internet stores (i.e. Amazon,
BarnesandNoble.com, Borders.com, Buy.com, Booksamillion
and top sellers among Internet bookstores in Poland such as
empik.com and merlin.pl) to create our own model with in-
stances generator as close to reality as possible.

The working model was prepared as follows. In the com-
putational experiments we assume that n ∈ {20,40}, m ∈
{2,3, . . . ,10,15, . . . ,100}. For each pair (n,m), 100 instances
were generated. In each instance, the following values were
randomly generated for all i and j in the corresponding ranges.
Delivery price: d j ∈ {5,10,15,20,25,30}, publisher’s recom-

mended price of book i: ri ∈ {5,10,15,20,25}, and price of
book i in bookstore j: pi j ∈ [ai j,bi j], where ai j ≥ 0.69r j,
bi j ≤ 1.47r j, and the structure of intervals [ai j,bi j] is prepared
as follows:

[32%]
minimum

minimum+ (median−minimum)
4

[9%]

minimum+ (median−minimum)
2

[9%]

minimum+ (median−minimum)
1.33

[8%]
median

[13%]

median+ (maximum−median)
4

[6%]

median+ (maximum−median)
2

[11%]

median+ (maximum−median)
1.33

[12%]
maximum

where minimum = 0.69r and maximum = 1.47r.

Based on real world observation the following discounting
function was proposed.

f (x) =

x if x ≤ 25,
0.95x if 25 < x ≤ 50,
0.90x if 50 < x ≤ 100,
0.85x if 100 < x ≤ 200,
0.80x if 200 < x.

This kind of advertisement is well-known and very often
used by stores / sellers. The more money you spend the more
discount you can achieve.

6.2. A set of experiments including Branch and Bound al-
gorithm. The first group of experiments is the one in which
the optimal solutions obtained by the exact BB algorithm were
compared to two state-of-the-art heuristic algorithms: Greedy,
Forecasting, and two newly developed algorithms: Cellular
and MinMin (for the ISOPwD). In these examples n ∈ {20},
m ∈ {2,3,4,5,6,7,8,9,10}, and discounts follow the proposed
piecewise discounting function. For each pair (n,m), 100 in-
stances were generated using the information in subsection 6.1.
The number of instances with optimal solutions computed by
BB is equal to 900.

The algorithms were compared using three metrics: an ap-
proximation factor, the run time spent by each heuristic to com-
pute a solution, and the dispersion analysis based on the stan-
dard deviation. The approximation factor of a heuristic is de-
fined as ρ = F(X)

F(X)∗ , where F(X) represents the solution found
by a heuristic and F(X)∗ denotes the optimal solution.

Figure 2 depicts the average solution of the aggregate values

6 Bull. Pol. Ac.: Tech. XX(Y) 2016

 ,
where F(X) represents the solution found by a heuristic and F(X)¤

denotes the optimal solution.

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 2 3 4 5 6 7 8 9 10

A
p

p
ro

x
im

a
ti

o
n

 F
a
ct

o
r

Products

20 Shops

Greedy
Forecasting

Cellular
MinMin

BB

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 2 3 4 5 6 7 8 9 10

A
p

p
ro

x
im

a
ti

o
n

 F
a
ct

o
r

Products

20 Shops

Greedy
Forecasting

Cellular
MinMin

BB

Among all heuristics, Cellular provides the best quality of
solutions (closest to the optimum), regardless the size of the
instances. In the worst case, the solution proposed by this algo-
rithm was merely 1.47% more expensive than the cheapest one.
For many instances Cellular algorithm computes the optimal
solution. Cellular computed the optimal solution for 62% of the
instances. It is worth noting that the algorithm is very stable as
regards to the quality of solutions (for most cases the solution
is between 1.24% – 1.47% worse than optimum).
Both Greedy and Forecasting algorithms provide similar quality
of solutions (for a lower number of products m, the latter was
better and for a higher number of products m > 5 the former
outperformed Forecasting). Moreover, it is easily noticeable that
the quality of solution degrades with the increasing number of
products m. Greedy was able to find the optimal solution for 6%
of the instances and Forecasting computed the optimal solutions
for 7% of the instances.
The last heuristic algorithm – MinMin provides the worst solu-
tions for a lower number of products regarding the rest of algo-

Fig. 3. Algorithm standard deviation chart – experiment with 20 shops
(including the optimal solution)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 2 3 4 5 6 7 8 9 10

S
ta

n
d

a
rd

 D
ev

ia
ti

o
n

Products

20 Shops

Greedy
Forecasting

Cellular
MinMin

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 2 3 4 5 6 7 8 9 10

S
ta

n
d

a
rd

 D
ev

ia
ti

o
n

Products

20 Shops

Greedy
Forecasting

Cellular
MinMin

 - 10.1515/bpasts-2016-0056
Downloaded from De Gruyter Online at 09/27/2016 01:29:57PM

via Gdansk University of Technology

512 Bull. Pol. Ac.: Tech. 64(3) 2016

J. Musial et al.

test from a given instance (sometimes optimum or close to,
sometimes quite far from it). We used the results of the BB
algorithm as a reference value. In each cell the CV value is
presented for the same instance of n shops and m products for
100 computational tests.

An important factor to consider in the context of online
shopping is the run time needed by any algorithm to compute
a solution. Figure 4 displays the results regarding the compari-
son of algorithms run time in microseconds [ms] (including the
optimal solution). Each cell represents the average value from
100 computational tests for 20 shops.

For a low number of products (m ∙ 5) MinMin is the fastest
algorithm. It can be observed that when the number of products
is bigger than five (m > 5), Greedy outperforms the rest of
algorithms. Differences between all algorithms are very sig-
nificant.

Run time execution for BB grows exponentially and it was
impossible to prepare experiments for a bigger number of prod-

ucts. On the other hand, all heuristics are very fast so the idea is
to further test its quality and run time for scalability issues by
increasing the number of products m. The results are presented
in the next subsection after the dispersion analysis.

6.3. Scalability: a set of experiments for heuristic algo-
rithms. In the second group of experiments a comparison be-
tween the set of algorithms was done regarding scalability. In
these examples we increase the size of the instances as follow:
n 2 f20, 40g, m 2 f5,  10, 15, …, 100g, and piecewise discount-
ing functions follow definition from subsection 6.1.
For each pair (n, m), 100 instances were generated. Instances
were generated using the same procedure described in Sec-
tion 6.2.

As we are not able to compute the optimal solution value in
a reasonable computational time given the size of the instances
we evaluate the relative error γ of each strategy under each met-
ric. The relative error is formally defined as γ = 

J. Musial et al.

Table 3
A comparison of algorithm results’ dispersion for the coefficient of variation

(CV) normalized measure

products Greedy Forecasting Cellular MinMin BB

2 2.62% 1.02% 0.78% 6.33% 0.00%
3 3.96% 2.11% 4.23% 7.67% 0.00%
4 3.63% 2.53% 1.68% 7.21% 0.00%
5 3.72% 3.61% 2.33% 6.55% 0.00%
6 3.27% 3.31% 2.17% 5.69% 0.00%
7 3.62% 3.70% 2.71% 6.32% 0.00%
8 3.78% 3.81% 2.54% 5.93% 0.00%
9 2.67% 2.93% 1.82% 4.84% 0.00%

10 3.64% 3.28% 1.84% 4.48% 0.00%

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9 10

T
im

e
[m

s]

Products

20 Shops

Greedy
Forecasting

Cellular
MinMin

BB

Fig. 4. Algorithm run time comparison - experiment with 20 shops
(including the optimal solution).

products. On the other hand, all heuristics are very fast so
the idea is to further test its quality and run time for scalability
issues by increasing the number of products m. The results are
presented in the next subsection after the dispersion analysis.

6.3. Scalability: a set of experiments for heuristic algo-
rithms. In the second group of experiments a comparison be-
tween the set of algorithms was done regarding scalability. In
these examples we increase the size of the instances as follow:
n ∈ {20,40}, m ∈ {5,10,15, . . . ,100}, and piecewise discount-
ing functions follow definition from subsection 6.1.
For each pair (n,m), 100 instances were generated. Instances
were generated using the same procedure described in Sec-
tion 6.2.

As we are not able to compute the optimal solution value in
a reasonable computational time given the size of the instances
we evaluate the relative error γ of each strategy under each
metric. The relative error is formally defined as γ = F(X)

F(X)best
,

where F(X) represents the solution found by a heuristic and
F(X)best denotes the best solution among all heuristics.

6.3.1. A set of experiments with 20 shops. Figure 5 presents
average solution values to the relative error for the 100 in-
stances over n = 20 shops, which are obtained by the evaluated
heuristics.

We can observe that Cellular outperforms the rest of
the algorithms. For all instances n,m where m =
{5,10,15, . . . ,100}, it provides the best quality solution. The
behavior of Cellular is the same than in the first set of experi-
ments.

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 10 20 30 40 50 60 70 80 90 100

R
el

a
ti

v
e

er
ro

r

Products

20 Shops

Greedy
Forecasting

Cellular
MinMin

Fig. 5. Algorithm results comparison - experiment with 20 shops
(without BB solution). Relative error is γ =

F(X)
F(X)best

, where F(X)

represents the solution found by a heuristic and F(X)best denotes the
best solution among all heuristics.

Greedy presents better scalability than MinMin and Fore-
casting by providing the second best quality of solutions. For
more than m > 15 products it stabilized within 10-11% of the
Cellular algorithm solution. For a low number of products
m = 5 Forecasting propose almost the same quality of solution
as the best Cellular algorithm (0.48% more expensive). From
more than m > 15 products it becomes the worst algorithm
among the tested ones. Moreover, it is easily noticeable that
the quality of solution degrades with the increasing number of
products m (compared to the best Cellular algorithm).

The last heuristic algorithm - MinMin provides the worst so-
lutions for a lower number of products (m < 15). However, for
a bigger number of products it provides better solutions than
the Forecasting algorithm (but worse than Greedy). MinMin
provides solutions between 6% and 16% (on average) bigger
than best Cellular solutions.

Figure 6 contains a comparison of heuristic algorithm re-
sults dispersion. Each point represents the standard deviation
value (deviation around the best value calculated from all algo-
rithms) from 100 computational tests for 20 shops where every
value for each test is presented as a correlation between the re-
sult and the best algorithm result for this computation (Greedy

best ,
Forecasting

best , Cellular
best , MinMin

best). In each point the standard devia-
tion value is presented for the same instance of n shops and m
products for 100 computational tests. It can provide very use-
ful information concerning the quality (based on stability) of
the algorithm results. Table 4 contains the information which
is represented by the coefficient of variation (CV) normalized
measure (percentage value).

Figure 7 exposes information regarding the comparison of
algorithm run time [ms]. Each cell represents the average value
from 100 computational tests for 20 shops. We can observe

8 Bull. Pol. Ac.: Tech. XX(Y) 2016

, where
F(X) represents the solution found by a heuristic and F(X)best
denotes the best solution among all heuristics.

6.3.1. A set of experiments with 20 shops. Figure 5 presents
average solution values to the relative error for the 100 in-
stances over n = 20 shops, which are obtained by the evaluated
heuristics.

Table 3
A comparison of algorithm results’ dispersion for the coefficient of

variation (CV) normalized measure

products Greedy Forecasting Cellular MinMin BB

12 2.62% 1.02% 0.78% 6.33% 0.00%

13 3.96% 2.11% 4.23% 7.67% 0.00%

14 3.63% 2.53% 1.68% 7.21% 0.00%

15 3.72% 3.61% 2.33% 6.55% 0.00%

16 3.27% 3.31% 2.17% 5.69% 0.00%

17 3.62% 3.70% 2.71% 6.32% 0.00%

18 3.78% 3.81% 2.54% 5.93% 0.00%

19 2.67% 2.93% 1.82% 4.84% 0.00%

10 3.64% 3.28% 1.84% 4.48% 0.00%

Fig. 4. Algorithm run time comparison – experiment with 20 shops
(including the optimal solution)

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9 10

T
im

e
[m

s]

Products

20 Shops

Greedy
Forecasting

Cellular
MinMin

BB

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9 10

T
im

e
[m

s]

Products

20 Shops

Greedy
Forecasting

Cellular
MinMin

BB

Fig. 5. Algorithm results comparison – experiment with 20 shops
(without BB solution). Relative error is γ = 

J. Musial et al.

Table 3
A comparison of algorithm results’ dispersion for the coefficient of variation

(CV) normalized measure

products Greedy Forecasting Cellular MinMin BB

2 2.62% 1.02% 0.78% 6.33% 0.00%
3 3.96% 2.11% 4.23% 7.67% 0.00%
4 3.63% 2.53% 1.68% 7.21% 0.00%
5 3.72% 3.61% 2.33% 6.55% 0.00%
6 3.27% 3.31% 2.17% 5.69% 0.00%
7 3.62% 3.70% 2.71% 6.32% 0.00%
8 3.78% 3.81% 2.54% 5.93% 0.00%
9 2.67% 2.93% 1.82% 4.84% 0.00%

10 3.64% 3.28% 1.84% 4.48% 0.00%

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9 10

T
im

e
[m

s]

Products

20 Shops

Greedy
Forecasting

Cellular
MinMin

BB

Fig. 4. Algorithm run time comparison - experiment with 20 shops
(including the optimal solution).

products. On the other hand, all heuristics are very fast so
the idea is to further test its quality and run time for scalability
issues by increasing the number of products m. The results are
presented in the next subsection after the dispersion analysis.

6.3. Scalability: a set of experiments for heuristic algo-
rithms. In the second group of experiments a comparison be-
tween the set of algorithms was done regarding scalability. In
these examples we increase the size of the instances as follow:
n ∈ {20,40}, m ∈ {5,10,15, . . . ,100}, and piecewise discount-
ing functions follow definition from subsection 6.1.
For each pair (n,m), 100 instances were generated. Instances
were generated using the same procedure described in Sec-
tion 6.2.

As we are not able to compute the optimal solution value in
a reasonable computational time given the size of the instances
we evaluate the relative error γ of each strategy under each
metric. The relative error is formally defined as γ = F(X)

F(X)best
,

where F(X) represents the solution found by a heuristic and
F(X)best denotes the best solution among all heuristics.

6.3.1. A set of experiments with 20 shops. Figure 5 presents
average solution values to the relative error for the 100 in-
stances over n = 20 shops, which are obtained by the evaluated
heuristics.

We can observe that Cellular outperforms the rest of
the algorithms. For all instances n,m where m =
{5,10,15, . . . ,100}, it provides the best quality solution. The
behavior of Cellular is the same than in the first set of experi-
ments.

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 10 20 30 40 50 60 70 80 90 100

R
el

a
ti

v
e

er
ro

r

Products

20 Shops

Greedy
Forecasting

Cellular
MinMin

Fig. 5. Algorithm results comparison - experiment with 20 shops
(without BB solution). Relative error is γ =

F(X)
F(X)best

, where F(X)

represents the solution found by a heuristic and F(X)best denotes the
best solution among all heuristics.

Greedy presents better scalability than MinMin and Fore-
casting by providing the second best quality of solutions. For
more than m > 15 products it stabilized within 10-11% of the
Cellular algorithm solution. For a low number of products
m = 5 Forecasting propose almost the same quality of solution
as the best Cellular algorithm (0.48% more expensive). From
more than m > 15 products it becomes the worst algorithm
among the tested ones. Moreover, it is easily noticeable that
the quality of solution degrades with the increasing number of
products m (compared to the best Cellular algorithm).

The last heuristic algorithm - MinMin provides the worst so-
lutions for a lower number of products (m < 15). However, for
a bigger number of products it provides better solutions than
the Forecasting algorithm (but worse than Greedy). MinMin
provides solutions between 6% and 16% (on average) bigger
than best Cellular solutions.

Figure 6 contains a comparison of heuristic algorithm re-
sults dispersion. Each point represents the standard deviation
value (deviation around the best value calculated from all algo-
rithms) from 100 computational tests for 20 shops where every
value for each test is presented as a correlation between the re-
sult and the best algorithm result for this computation (Greedy

best ,
Forecasting

best , Cellular
best , MinMin

best). In each point the standard devia-
tion value is presented for the same instance of n shops and m
products for 100 computational tests. It can provide very use-
ful information concerning the quality (based on stability) of
the algorithm results. Table 4 contains the information which
is represented by the coefficient of variation (CV) normalized
measure (percentage value).

Figure 7 exposes information regarding the comparison of
algorithm run time [ms]. Each cell represents the average value
from 100 computational tests for 20 shops. We can observe

8 Bull. Pol. Ac.: Tech. XX(Y) 2016

, where F(X) rep-
resents the solution found by a heuristic and F(X)best denotes the best

solution among all heuristics

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 10 20 30 40 50 60 70 80 90 100

R
el

a
ti

v
e

er
ro

r

Products

20 Shops

Greedy
Forecasting

Cellular
MinMin

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 10 20 30 40 50 60 70 80 90 100

R
el

a
ti

v
e

er
ro

r

Products

20 Shops

Greedy
Forecasting

Cellular
MinMin

We can observe that Cellular outperforms the rest of the al-
gorithms. For all instances n,  m where m 2 f5,  10,  15,  …,  100g,
it provides the best quality solution. The behavior of Cellular
is the same than in the first set of experiments.

Greedy presents better scalability than MinMin and Fore-
casting by providing the second best quality of solutions.
For more than m > 15 products it stabilized within 10‒11%
of the Cellular algorithm solution. For a low number of

 - 10.1515/bpasts-2016-0056
Downloaded from De Gruyter Online at 09/27/2016 01:29:57PM

via Gdansk University of Technology

513Bull. Pol. Ac.: Tech. 64(3) 2016

Algorithms solving the Internet shopping optimization problem with price discounts

products m = 5 Forecasting propose almost the same qual-
ity of solution as the best Cellular algorithm (0.48% more
expensive). From more than m > 15 products it becomes
the worst algorithm among the tested ones. Moreover, it is

easily noticeable that the quality of solution degrades with
the increasing number of products m (compared to the best
Cellular algorithm).

The last heuristic algorithm – MinMin provides the worst
solutions for a lower number of products (m < 15). However,
for a bigger number of products it provides better solutions than
the Forecasting algorithm (but worse than Greedy). MinMin
provides solutions between 6% and 16% (on average) bigger
than best Cellular solutions.

Figure 6 contains a comparison of heuristic algorithm re-
sults dispersion. Each point represents the standard deviation
value (deviation around the best value calculated from all al-
gorithms) from 100 computational tests for 20 shops where
every value for each test is presented as a correlation between
the result and the best algorithm result for this computation
(

J. Musial et al.

Table 3
A comparison of algorithm results’ dispersion for the coefficient of variation

(CV) normalized measure

products Greedy Forecasting Cellular MinMin BB

2 2.62% 1.02% 0.78% 6.33% 0.00%
3 3.96% 2.11% 4.23% 7.67% 0.00%
4 3.63% 2.53% 1.68% 7.21% 0.00%
5 3.72% 3.61% 2.33% 6.55% 0.00%
6 3.27% 3.31% 2.17% 5.69% 0.00%
7 3.62% 3.70% 2.71% 6.32% 0.00%
8 3.78% 3.81% 2.54% 5.93% 0.00%
9 2.67% 2.93% 1.82% 4.84% 0.00%

10 3.64% 3.28% 1.84% 4.48% 0.00%

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9 10

T
im

e
[m

s]

Products

20 Shops

Greedy
Forecasting

Cellular
MinMin

BB

Fig. 4. Algorithm run time comparison - experiment with 20 shops
(including the optimal solution).

products. On the other hand, all heuristics are very fast so
the idea is to further test its quality and run time for scalability
issues by increasing the number of products m. The results are
presented in the next subsection after the dispersion analysis.

6.3. Scalability: a set of experiments for heuristic algo-
rithms. In the second group of experiments a comparison be-
tween the set of algorithms was done regarding scalability. In
these examples we increase the size of the instances as follow:
n ∈ {20,40}, m ∈ {5,10,15, . . . ,100}, and piecewise discount-
ing functions follow definition from subsection 6.1.
For each pair (n,m), 100 instances were generated. Instances
were generated using the same procedure described in Sec-
tion 6.2.

As we are not able to compute the optimal solution value in
a reasonable computational time given the size of the instances
we evaluate the relative error γ of each strategy under each
metric. The relative error is formally defined as γ = F(X)

F(X)best
,

where F(X) represents the solution found by a heuristic and
F(X)best denotes the best solution among all heuristics.

6.3.1. A set of experiments with 20 shops. Figure 5 presents
average solution values to the relative error for the 100 in-
stances over n = 20 shops, which are obtained by the evaluated
heuristics.

We can observe that Cellular outperforms the rest of
the algorithms. For all instances n,m where m =
{5,10,15, . . . ,100}, it provides the best quality solution. The
behavior of Cellular is the same than in the first set of experi-
ments.

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 10 20 30 40 50 60 70 80 90 100

R
el

a
ti

v
e

er
ro

r

Products

20 Shops

Greedy
Forecasting

Cellular
MinMin

Fig. 5. Algorithm results comparison - experiment with 20 shops
(without BB solution). Relative error is γ =

F(X)
F(X)best

, where F(X)

represents the solution found by a heuristic and F(X)best denotes the
best solution among all heuristics.

Greedy presents better scalability than MinMin and Fore-
casting by providing the second best quality of solutions. For
more than m > 15 products it stabilized within 10-11% of the
Cellular algorithm solution. For a low number of products
m = 5 Forecasting propose almost the same quality of solution
as the best Cellular algorithm (0.48% more expensive). From
more than m > 15 products it becomes the worst algorithm
among the tested ones. Moreover, it is easily noticeable that
the quality of solution degrades with the increasing number of
products m (compared to the best Cellular algorithm).

The last heuristic algorithm - MinMin provides the worst so-
lutions for a lower number of products (m < 15). However, for
a bigger number of products it provides better solutions than
the Forecasting algorithm (but worse than Greedy). MinMin
provides solutions between 6% and 16% (on average) bigger
than best Cellular solutions.

Figure 6 contains a comparison of heuristic algorithm re-
sults dispersion. Each point represents the standard deviation
value (deviation around the best value calculated from all algo-
rithms) from 100 computational tests for 20 shops where every
value for each test is presented as a correlation between the re-
sult and the best algorithm result for this computation (Greedy

best ,
Forecasting

best , Cellular
best , MinMin

best). In each point the standard devia-
tion value is presented for the same instance of n shops and m
products for 100 computational tests. It can provide very use-
ful information concerning the quality (based on stability) of
the algorithm results. Table 4 contains the information which
is represented by the coefficient of variation (CV) normalized
measure (percentage value).

Figure 7 exposes information regarding the comparison of
algorithm run time [ms]. Each cell represents the average value
from 100 computational tests for 20 shops. We can observe

8 Bull. Pol. Ac.: Tech. XX(Y) 2016

,

J. Musial et al.

Table 3
A comparison of algorithm results’ dispersion for the coefficient of variation

(CV) normalized measure

products Greedy Forecasting Cellular MinMin BB

2 2.62% 1.02% 0.78% 6.33% 0.00%
3 3.96% 2.11% 4.23% 7.67% 0.00%
4 3.63% 2.53% 1.68% 7.21% 0.00%
5 3.72% 3.61% 2.33% 6.55% 0.00%
6 3.27% 3.31% 2.17% 5.69% 0.00%
7 3.62% 3.70% 2.71% 6.32% 0.00%
8 3.78% 3.81% 2.54% 5.93% 0.00%
9 2.67% 2.93% 1.82% 4.84% 0.00%

10 3.64% 3.28% 1.84% 4.48% 0.00%

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9 10

T
im

e
[m

s]

Products

20 Shops

Greedy
Forecasting

Cellular
MinMin

BB

Fig. 4. Algorithm run time comparison - experiment with 20 shops
(including the optimal solution).

products. On the other hand, all heuristics are very fast so
the idea is to further test its quality and run time for scalability
issues by increasing the number of products m. The results are
presented in the next subsection after the dispersion analysis.

6.3. Scalability: a set of experiments for heuristic algo-
rithms. In the second group of experiments a comparison be-
tween the set of algorithms was done regarding scalability. In
these examples we increase the size of the instances as follow:
n ∈ {20,40}, m ∈ {5,10,15, . . . ,100}, and piecewise discount-
ing functions follow definition from subsection 6.1.
For each pair (n,m), 100 instances were generated. Instances
were generated using the same procedure described in Sec-
tion 6.2.

As we are not able to compute the optimal solution value in
a reasonable computational time given the size of the instances
we evaluate the relative error γ of each strategy under each
metric. The relative error is formally defined as γ = F(X)

F(X)best
,

where F(X) represents the solution found by a heuristic and
F(X)best denotes the best solution among all heuristics.

6.3.1. A set of experiments with 20 shops. Figure 5 presents
average solution values to the relative error for the 100 in-
stances over n = 20 shops, which are obtained by the evaluated
heuristics.

We can observe that Cellular outperforms the rest of
the algorithms. For all instances n,m where m =
{5,10,15, . . . ,100}, it provides the best quality solution. The
behavior of Cellular is the same than in the first set of experi-
ments.

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 10 20 30 40 50 60 70 80 90 100

R
el

a
ti

v
e

er
ro

r

Products

20 Shops

Greedy
Forecasting

Cellular
MinMin

Fig. 5. Algorithm results comparison - experiment with 20 shops
(without BB solution). Relative error is γ =

F(X)
F(X)best

, where F(X)

represents the solution found by a heuristic and F(X)best denotes the
best solution among all heuristics.

Greedy presents better scalability than MinMin and Fore-
casting by providing the second best quality of solutions. For
more than m > 15 products it stabilized within 10-11% of the
Cellular algorithm solution. For a low number of products
m = 5 Forecasting propose almost the same quality of solution
as the best Cellular algorithm (0.48% more expensive). From
more than m > 15 products it becomes the worst algorithm
among the tested ones. Moreover, it is easily noticeable that
the quality of solution degrades with the increasing number of
products m (compared to the best Cellular algorithm).

The last heuristic algorithm - MinMin provides the worst so-
lutions for a lower number of products (m < 15). However, for
a bigger number of products it provides better solutions than
the Forecasting algorithm (but worse than Greedy). MinMin
provides solutions between 6% and 16% (on average) bigger
than best Cellular solutions.

Figure 6 contains a comparison of heuristic algorithm re-
sults dispersion. Each point represents the standard deviation
value (deviation around the best value calculated from all algo-
rithms) from 100 computational tests for 20 shops where every
value for each test is presented as a correlation between the re-
sult and the best algorithm result for this computation (Greedy

best ,
Forecasting

best , Cellular
best , MinMin

best). In each point the standard devia-
tion value is presented for the same instance of n shops and m
products for 100 computational tests. It can provide very use-
ful information concerning the quality (based on stability) of
the algorithm results. Table 4 contains the information which
is represented by the coefficient of variation (CV) normalized
measure (percentage value).

Figure 7 exposes information regarding the comparison of
algorithm run time [ms]. Each cell represents the average value
from 100 computational tests for 20 shops. We can observe

8 Bull. Pol. Ac.: Tech. XX(Y) 2016

 ,

J. Musial et al.

Table 3
A comparison of algorithm results’ dispersion for the coefficient of variation

(CV) normalized measure

products Greedy Forecasting Cellular MinMin BB

2 2.62% 1.02% 0.78% 6.33% 0.00%
3 3.96% 2.11% 4.23% 7.67% 0.00%
4 3.63% 2.53% 1.68% 7.21% 0.00%
5 3.72% 3.61% 2.33% 6.55% 0.00%
6 3.27% 3.31% 2.17% 5.69% 0.00%
7 3.62% 3.70% 2.71% 6.32% 0.00%
8 3.78% 3.81% 2.54% 5.93% 0.00%
9 2.67% 2.93% 1.82% 4.84% 0.00%

10 3.64% 3.28% 1.84% 4.48% 0.00%

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9 10

T
im

e
[m

s]

Products

20 Shops

Greedy
Forecasting

Cellular
MinMin

BB

Fig. 4. Algorithm run time comparison - experiment with 20 shops
(including the optimal solution).

products. On the other hand, all heuristics are very fast so
the idea is to further test its quality and run time for scalability
issues by increasing the number of products m. The results are
presented in the next subsection after the dispersion analysis.

6.3. Scalability: a set of experiments for heuristic algo-
rithms. In the second group of experiments a comparison be-
tween the set of algorithms was done regarding scalability. In
these examples we increase the size of the instances as follow:
n ∈ {20,40}, m ∈ {5,10,15, . . . ,100}, and piecewise discount-
ing functions follow definition from subsection 6.1.
For each pair (n,m), 100 instances were generated. Instances
were generated using the same procedure described in Sec-
tion 6.2.

As we are not able to compute the optimal solution value in
a reasonable computational time given the size of the instances
we evaluate the relative error γ of each strategy under each
metric. The relative error is formally defined as γ = F(X)

F(X)best
,

where F(X) represents the solution found by a heuristic and
F(X)best denotes the best solution among all heuristics.

6.3.1. A set of experiments with 20 shops. Figure 5 presents
average solution values to the relative error for the 100 in-
stances over n = 20 shops, which are obtained by the evaluated
heuristics.

We can observe that Cellular outperforms the rest of
the algorithms. For all instances n,m where m =
{5,10,15, . . . ,100}, it provides the best quality solution. The
behavior of Cellular is the same than in the first set of experi-
ments.

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 10 20 30 40 50 60 70 80 90 100

R
el

a
ti

v
e

er
ro

r

Products

20 Shops

Greedy
Forecasting

Cellular
MinMin

Fig. 5. Algorithm results comparison - experiment with 20 shops
(without BB solution). Relative error is γ =

F(X)
F(X)best

, where F(X)

represents the solution found by a heuristic and F(X)best denotes the
best solution among all heuristics.

Greedy presents better scalability than MinMin and Fore-
casting by providing the second best quality of solutions. For
more than m > 15 products it stabilized within 10-11% of the
Cellular algorithm solution. For a low number of products
m = 5 Forecasting propose almost the same quality of solution
as the best Cellular algorithm (0.48% more expensive). From
more than m > 15 products it becomes the worst algorithm
among the tested ones. Moreover, it is easily noticeable that
the quality of solution degrades with the increasing number of
products m (compared to the best Cellular algorithm).

The last heuristic algorithm - MinMin provides the worst so-
lutions for a lower number of products (m < 15). However, for
a bigger number of products it provides better solutions than
the Forecasting algorithm (but worse than Greedy). MinMin
provides solutions between 6% and 16% (on average) bigger
than best Cellular solutions.

Figure 6 contains a comparison of heuristic algorithm re-
sults dispersion. Each point represents the standard deviation
value (deviation around the best value calculated from all algo-
rithms) from 100 computational tests for 20 shops where every
value for each test is presented as a correlation between the re-
sult and the best algorithm result for this computation (Greedy

best ,
Forecasting

best , Cellular
best , MinMin

best). In each point the standard devia-
tion value is presented for the same instance of n shops and m
products for 100 computational tests. It can provide very use-
ful information concerning the quality (based on stability) of
the algorithm results. Table 4 contains the information which
is represented by the coefficient of variation (CV) normalized
measure (percentage value).

Figure 7 exposes information regarding the comparison of
algorithm run time [ms]. Each cell represents the average value
from 100 computational tests for 20 shops. We can observe

8 Bull. Pol. Ac.: Tech. XX(Y) 2016

,

J. Musial et al.

Table 3
A comparison of algorithm results’ dispersion for the coefficient of variation

(CV) normalized measure

products Greedy Forecasting Cellular MinMin BB

2 2.62% 1.02% 0.78% 6.33% 0.00%
3 3.96% 2.11% 4.23% 7.67% 0.00%
4 3.63% 2.53% 1.68% 7.21% 0.00%
5 3.72% 3.61% 2.33% 6.55% 0.00%
6 3.27% 3.31% 2.17% 5.69% 0.00%
7 3.62% 3.70% 2.71% 6.32% 0.00%
8 3.78% 3.81% 2.54% 5.93% 0.00%
9 2.67% 2.93% 1.82% 4.84% 0.00%

10 3.64% 3.28% 1.84% 4.48% 0.00%

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9 10

T
im

e
[m

s]

Products

20 Shops

Greedy
Forecasting

Cellular
MinMin

BB

Fig. 4. Algorithm run time comparison - experiment with 20 shops
(including the optimal solution).

products. On the other hand, all heuristics are very fast so
the idea is to further test its quality and run time for scalability
issues by increasing the number of products m. The results are
presented in the next subsection after the dispersion analysis.

6.3. Scalability: a set of experiments for heuristic algo-
rithms. In the second group of experiments a comparison be-
tween the set of algorithms was done regarding scalability. In
these examples we increase the size of the instances as follow:
n ∈ {20,40}, m ∈ {5,10,15, . . . ,100}, and piecewise discount-
ing functions follow definition from subsection 6.1.
For each pair (n,m), 100 instances were generated. Instances
were generated using the same procedure described in Sec-
tion 6.2.

As we are not able to compute the optimal solution value in
a reasonable computational time given the size of the instances
we evaluate the relative error γ of each strategy under each
metric. The relative error is formally defined as γ = F(X)

F(X)best
,

where F(X) represents the solution found by a heuristic and
F(X)best denotes the best solution among all heuristics.

6.3.1. A set of experiments with 20 shops. Figure 5 presents
average solution values to the relative error for the 100 in-
stances over n = 20 shops, which are obtained by the evaluated
heuristics.

We can observe that Cellular outperforms the rest of
the algorithms. For all instances n,m where m =
{5,10,15, . . . ,100}, it provides the best quality solution. The
behavior of Cellular is the same than in the first set of experi-
ments.

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 10 20 30 40 50 60 70 80 90 100

R
el

a
ti

v
e

er
ro

r

Products

20 Shops

Greedy
Forecasting

Cellular
MinMin

Fig. 5. Algorithm results comparison - experiment with 20 shops
(without BB solution). Relative error is γ =

F(X)
F(X)best

, where F(X)

represents the solution found by a heuristic and F(X)best denotes the
best solution among all heuristics.

Greedy presents better scalability than MinMin and Fore-
casting by providing the second best quality of solutions. For
more than m > 15 products it stabilized within 10-11% of the
Cellular algorithm solution. For a low number of products
m = 5 Forecasting propose almost the same quality of solution
as the best Cellular algorithm (0.48% more expensive). From
more than m > 15 products it becomes the worst algorithm
among the tested ones. Moreover, it is easily noticeable that
the quality of solution degrades with the increasing number of
products m (compared to the best Cellular algorithm).

The last heuristic algorithm - MinMin provides the worst so-
lutions for a lower number of products (m < 15). However, for
a bigger number of products it provides better solutions than
the Forecasting algorithm (but worse than Greedy). MinMin
provides solutions between 6% and 16% (on average) bigger
than best Cellular solutions.

Figure 6 contains a comparison of heuristic algorithm re-
sults dispersion. Each point represents the standard deviation
value (deviation around the best value calculated from all algo-
rithms) from 100 computational tests for 20 shops where every
value for each test is presented as a correlation between the re-
sult and the best algorithm result for this computation (Greedy

best ,
Forecasting

best , Cellular
best , MinMin

best). In each point the standard devia-
tion value is presented for the same instance of n shops and m
products for 100 computational tests. It can provide very use-
ful information concerning the quality (based on stability) of
the algorithm results. Table 4 contains the information which
is represented by the coefficient of variation (CV) normalized
measure (percentage value).

Figure 7 exposes information regarding the comparison of
algorithm run time [ms]. Each cell represents the average value
from 100 computational tests for 20 shops. We can observe

8 Bull. Pol. Ac.: Tech. XX(Y) 2016

). In each point the standard
deviation value is presented for the same instance of n shops
and m products for 100 computational tests. It can provide very
useful information concerning the quality (based on stability)
of the algorithm results. Table 4 contains the information which
is represented by the coefficient of variation (CV) normalized
measure (percentage value).

Figure 7 exposes information regarding the comparison
of algorithm run time [ms]. Each cell represents the average
value from 100 computational tests for 20 shops. We can ob-
serve that for a low number of products m = 5 MinMin is the
fastest algorithm. For other instances of the ISOPwD problem
(number of products m > 5), algorithm Greedy is the fastest.
Differences between all algorithms are very significant. The
following example illustrates these differences. A few obser-
vations are worth noting.

Fig. 6. Algorithm standard deviation chart – experiment with 20 shops

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 10 20 30 40 50 60 70 80 90 100

S
ta

n
d

a
rd

 D
ev

ia
ti

o
n

Products

20 Shops

Greedy
Forecasting

Cellular
MinMin

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 10 20 30 40 50 60 70 80 90 100

S
ta

n
d

a
rd

 D
ev

ia
ti

o
n

Products

20 Shops

Greedy
Forecasting

Cellular
MinMin

Table 4
Heuristic algorithm results’ dispersion for the coefficient

of variation (CV) normalized measure

products shops Greedy Forecasting Cellular MinMin

15 20 4.45% 2.92% 2.62% 6.58%

10 20 3.75% 3.73% 0.94% 5.24%

15 20 2.79% 3.17% 0.00% 3.86%

20 20 3.18% 3.19% 0.00% 3.93%

25 20 2.65% 2.65% 0.00% 3.74%

30 20 2.71% 3.09% 0.00% 3.26%

35 20 2.36% 2.47% 0.00% 3.50%

40 20 3.42% 2.36% 0.00% 3.82%

45 20 3.04% 2.38% 0.00% 3.62%

50 20 3.09% 2.40% 0.00% 3.61%

55 20 2.69% 2.06% 0.00% 3.29%

60 20 2.51% 2.27% 0.00% 3.40%

65 20 2.10% 2.17% 0.00% 3.72%

70 20 3.77% 2.12% 0.00% 3.62%

75 20 2.57% 2.35% 0.00% 3.37%

80 20 2.73% 1.98% 0.00% 3.23%

85 20 3.48% 2.36% 0.00% 3.56%

90 20 2.06% 1.99% 0.00% 3.05%

95 20 3.47% 1.98% 0.00% 3.49%

100 20 2.71% 3.09% 0.00% 3.26%

Fig. 7. Algorithm processing time comparison – experiment with
20 shops (without BB solution)

 0

 500

 1000

 1500

 2000

 10 20 30 40 50 60 70 80 90 100

T
im

e
[m

s]

Products

20 Shops

Greedy
Forecasting

Cellular
MinMin

 0

 500

 1000

 1500

 2000

 10 20 30 40 50 60 70 80 90 100

T
im

e
[m

s]

Products

20 Shops

Greedy
Forecasting

Cellular
MinMin

6.3.2. A set of experiments with 40 shops. There were no
changes regarding the behavior of Cellular, it provides the best
quality of solutions. That is, for all instances n, m it provided
the best solution.

 - 10.1515/bpasts-2016-0056
Downloaded from De Gruyter Online at 09/27/2016 01:29:57PM

via Gdansk University of Technology

514 Bull. Pol. Ac.: Tech. 64(3) 2016

J. Musial et al.

Figure 8 displays relative error average results. We can no-
tice that characteristics of the results are not far away from
experiment with m = 20 shops.

Algorithm Greedy provides the second best quality of
solutions. For more than m > 25 products it stabilized within
9.6‒10.8% of the Cellular algorithm solutions. For a low number
of products m = 5 Forecasting computes almost the same quality
of solution as the best Cellular algorithm (1.55% more expen-
sive). From more than m > 10 products it becomes the worst al-
gorithm among the tested ones. Moreover, it is easily noticeable
that the quality of solution degrade with the increasing number
of products m (compared to the best {Cellular algorithm}) from
1.55% to 15.83% percent on average greater than Cellular. Min-
Min provides the worst solutions for a lower number of products
(m = 5). However, for a bigger number of products it provides
better solutions than the Forecasting algorithm (but worse than
Greedy). The algorithm also provides better scalability than the
previous experiment for smaller number of web-stores.

Figure 9 contains a comparison of heuristic algorithm re-
sults dispersion.

Regarding 40 shops experiment general observations are
similar to the ones from the 20 web-stores experiment. How-
ever, some differences are significant and worth to notice. All
standard deviation and CV values are lower for the experiment
with 40 shops. Algorithm Greedy provides a lower dispersion
level than Forecasting (slightly but still). Observations for the
Cellular and MinMin algorithms are similar to the experiment
with 20 web-stores.

Regarding the computation time (see Fig. 10), for all in-
stances with n = 40 web-stores, algorithm Greedy is the fast-
est. Differences between all algorithms are very significant.
Calculation times are even more important here, since goal ap-
plication will work as an online web-site. There is plenty of
research showing that users do not want to wait to see a web-
page content, because they quickly lose interest. An up-to-date
survey is given in [32].

Fig. 8. Algorithm results comparison (Relative error measure) – ex-
periment with 40 shops (without BB solution)

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 10 20 30 40 50 60 70 80 90 100

R
el

a
ti

v
e

er
ro

r

Products

40 Shops

Greedy
Forecasting

Cellular
MinMin

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 10 20 30 40 50 60 70 80 90 100

R
el

a
ti

v
e

er
ro

r

Products

40 Shops

Greedy
Forecasting

Cellular
MinMin

Fig. 9. Algorithm standard deviation chart – experiment with 40 shops

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 10 20 30 40 50 60 70 80 90 100

S
ta

n
d

a
rd

 D
ev

ia
ti

o
n

Products

40 Shops

Greedy
Forecasting

Cellular
MinMin

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 10 20 30 40 50 60 70 80 90 100

S
ta

n
d

a
rd

 D
ev

ia
ti

o
n

Products

40 Shops

Greedy
Forecasting

Cellular
MinMin

Fig. 10. Algorithm processing time comparison – experiment with
40 shops (without BB solution)

 0

 1000

 2000

 3000

 4000

 5000

 10 20 30 40 50 60 70 80 90 100

T
im

e
[m

s]

Products

40 Shops

Greedy
Forecasting

Cellular
MinMin

 0

 1000

 2000

 3000

 4000

 5000

 10 20 30 40 50 60 70 80 90 100

T
im

e
[m

s]

Products

40 Shops

Greedy
Forecasting

Cellular
MinMin

Concerning all results collected in the computational exper-
iment it can be stated that the Cellular algorithm provides the
best solutions among all heuristic algorithms. The algorithm also
computes more stable solutions than the rest of compared algo-
rithms. On the other hand, it is the slowest one. What is worth
noting is that it could be much more efficient when parallelized
on five machines (each cell can process on a different machine).
Another important consideration is that in a real e-commerce
web site the instances of the algorithms will be executed in the
server machines (i.e. in a web-server of a data center), which
usually are more powerful than customers’ machines.

Algorithm Greedy can result in a lot of interest due to very
fast processing times in which it can provide a good quality
of solutions. Both algorithms Greedy and Forecasting can be
parallelized for two machines (both algorithms make two sepa-
rate executions and pick the best of these two at the final step).

The performance of MinMin can be improved by using
a local search algorithm [33]. To improve the run time exe-
cution MinMin can be easily parallelized. There are different

 - 10.1515/bpasts-2016-0056
Downloaded from De Gruyter Online at 09/27/2016 01:29:57PM

via Gdansk University of Technology

515Bull. Pol. Ac.: Tech. 64(3) 2016

Algorithms solving the Internet shopping optimization problem with price discounts

parallel implementations of the min-min scheduling algorithm
reported in literature [33, 34], both CPU and GPU parallel
implementations.

Given the fast run time execution and the good quality of
solutions that Greedy, Forecasting and MinMin can compute
in average their solutions can be used as initial seeds for Cel-
lular. It could help to improve the run time execution of the
algorithm without degrading its performance. Special database
system optimization could be performed to decrease all-around
computational times [35].

7. Conclusions

In this paper, we addressed the Internet shopping optimization
problem including price discounts. For the practical application,
we created a working model as close to real Internet shopping
conditions as possible. The main reason was their wide choice
in Internet web-stores and frequency purchase. A new set of
algorithms is presented, three heuristics and a new cellular pro-
cessing optimization algorithm. Computer experiments demon-
strated their good performance. The results generated by the
algorithms were compared to the optimal solutions computed
by a proposed branch and bound algorithm.

As for current version of the problem (doesn’t count yet
with a linear model) it is not possible at the moment to perform
a relaxation technique on the restrictions or to implement it on
a MIP solver such as CPLEX or Gurobi. Nonetheless, presenta-
tion of a valid MILP model is certainly worth considering and
interesting future step – this will be one of our next challenges.

In the future, we plan to extend the Internet shopping model to
include additional constraints such as: minimum delivery times,
incomplete shopping lists realization, and maximum budget.
Moreover, we plan to propose new quality algorithms for dual
discounting function ISOP [36]. The experimental results demon-
strated the potential by the new Cellular processing optimization
algorithm. However, one of the main concerns for its applicabil-
ity to ISOP is the time needed to find a solution. To alleviate the
problem and also deal with scalability we consider investigating
a parallel version of the algorithm on a GPU infrastructure. Fur-
thermore, there are some interesting similarities between ISOP
and exciting Cloud Brokering [37]. Linking it with ISOP may
result in the possibility of using algorithms prepared for ISOP.

Acknowledgments. This study was partially supported by the
FNR (Luxembourg) and NCBiR (Poland), through IShOP proj-
ect, INTER/POLLUX/13/6466384.

References
 [1] K. M. Tolle and H. Chen, “Intelligent software agents for elec-

tronic commerce”, Handbook on Electronic Commerce, Springer
Berlin Heidelberg, 365–382 (2000).

 [2] S. Rose and A. Dhandayudham, “Towards an understanding of
Internet-based problem shopping behaviour: The concept of on-
line shopping addiction and its proposed predictors”, Journal of
Behavioral Addictions 3 (2), 83–89 (2014).

 [3] J. Blazewicz, M. Kovalyov, J. Musial, A. Urbanski and A. Wo-
jciechowski, “Internet shopping optimization problem”, Interna-
tional Journal of Applied Mathematics and Computer Science
20 (2), 385–390 (2010).

 [4] J. Blazewicz and J. Musial, “E-commerce evaluation – multi-
item Internet shopping. Optimization and heuristic algorithms”,
Operations Research Proceedings 2010, 149–154 (2011).

 [5] J. Blazewicz, P. Bouvry, M. Y. Kovalyov and J. Musial, “Internet
shopping with price sensitive discounts”, 4OR-Q J Oper Res 12
(1), 35–48 (2014).

 [6] J. Blazewicz, P. Bouvry, M. Y. Kovalyov and J. Musial, “Erratum
to: Internet shopping with price-sensitive discounts”, 4OR-Q J
Oper Res 12 (4), 403–406 (2014).

 [7] B. Sawik, “Downside risk approach for multi-objective portfolio
optimization”, Operations Research Proceedings 2011, 191–196
(2012).

 [8] D. R. Goossens and A. J. T. Maas, “Exact algorithms for pro-
curement problems under a total quantity discount structure”,
European Journal of Operational Research 178 (2), 603–626
(2007).

 [9] A.Wojciechowski and J. Musial, “Towards optimal multi-item
shopping basket management: Heuristic approach”, Lecture
Notes in Computer Science (LNCS) 6428, 349–357 (2010).

 [10] A. Wojciechowski and J. Musial, “A customer assistance system:
optimizing basket cost”, Foundations of Computing and Deci-
sion Sciences 34 (1), 59–69 (2009).

 [11] M. Shaw, R. Blanning, T. Strader and A. Whinston, Handbook on
Electronic Commerce, International Handbooks on Information
Systems, Springer, Berlin-Heidelberg (2000).

 [12] C. Revelle, H. Eiselt and M. Daskin, “A bibliography for some
fundamental problem categories in discrete location science”,
European Journal of Operational Research 184 (3), 817–848
(2008).

 [13] J. Krarup, D. Pisinger and F. Plastria, “Discrete location prob-
lems with push-pull objectives”, Discrete Applied Mathematics
123 (13), 363–378 (2002).

 [14] H. Eiselt and C. Sandblom, Decision Analysis, Location Models,
and Scheduling Problems, Springer-Verlag, Berlin-Heidelberg-
New York (2004).

 [15] M. Melo, S. Nickel and F. Saldanha-da Gama, “Facility location
and supply chain management – A review”, European Journal
of Operational Research 196 (2), 401–412 (2009).

 [16] C. Iyigun and A. Ben-Israel, “A generalized Weiszfeld method
for the multi-facility location problem”, Operations Research
Letters 38 (3), 207–214 (2010).

 [17] M. Garey and D. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness, New York, Freeman (1979).

 [18] S. Krichen, A. Laabidi and F. B. Abdelaziz, “Single supplier mul-
tiple cooperative retailers inventory model with quantity discount
and permissible delay in payments”, Computers & Industrial
Engineering 60 (1), 164–172 (2011).

 [19] D. Manerba and R. Mansini, “An exact algorithm for the capac-
itated total quantity discount problem”, European Journal of
Operational Research 222 (2), 287–300 (2012).

 [20] S. H. Mirmohammadi, S. Shadrokh and F. Kianfar, “An efficient
optimal algorithm for the quantity discount problem in material
requirement planning”, Computers & Operations Research 36
(6), 1780–1788 (2009).

 [21] C. Munson and J. Hu, “Incorporating quantity discounts and
their inventory impacts into the centralized purchasing decision”,
European Journal of Operational Research 201 (2), 581– 592
(2010).

 - 10.1515/bpasts-2016-0056
Downloaded from De Gruyter Online at 09/27/2016 01:29:57PM

via Gdansk University of Technology

516 Bull. Pol. Ac.: Tech. 64(3) 2016

J. Musial et al.

 [22] T. Cormen, C. Leiserson, R. Rivest and C. Stein, Introduction
to Algorithms, McGraw-Hill Higher Education, 2nd edition
(2001).

 [23] J. D. Terán-Villanueva, H. J. F. Huacuja, J. M. C. Valadez, R. A. Pa-
zos Rangel, H. J. P. Soberanes and J. A. M. Flores, “Cellular pro-
cessing algorithms”, Studies in Fuzziness and Soft Computing 294,
53–74 (2013).

 [24] E. Burke, G. Kendall, J. Newall, E. Hart, P. Ross and S. Schulen-
burg, “Hyper-heuristics: An emerging direction in modern search
technology”, Handbook of Metaheuristics, Springer, 457–474
(2003).

 [25] C. O. Diaz, J. E. Pecero and P. Bouvry, “Scalable, low complexi-
ty, and fast greedy scheduling heuristics for highly heterogeneous
distributed computing systems”, Journal of Supercomputing 67
(3), 837–853 (2014).

 [26] S. Nesmachnow, B. Dorronsoro, J. E. Pecero and P. Bouvry,
“Energy-aware scheduling on multicore heterogeneous grid com-
puting systems”, Journal of Grid Computing 11 (4), 653–680
(2013).

 [27] M. Wu, W. Shu and H. Zhang, “Segmented min-min: A static
mapping algorithm for meta-tasks on heterogeneous computing
systems”, Heterogeneous Computing Workshop IEEE, 375–385
(2000).

 [28] T. Braun, H. Siegel, N. Beck, L. Bölöni, M. Maheswaran,
A. Reuther, J. Robertson, M. Theys, B. Yao, D. Hensgen et al.,
“A comparison of eleven static heuristics for mapping a class
of independent tasks onto heterogeneous distributed computing
systems”, Journal of Parallel and Distributed Computing 61 (6),
810–837 (2001).

 [29] A. Land and A. Doig, “An automatic method for solving discrete
programming problems”, Econometrica 28 (3), 497–520 (1960).

 [30] E. W. Karen Clay, Ramayya Krishnan, “Prices and price disper-
sion on the web: evidence from the online book industry”, The
Journal of Industrial Economics 49 (4), 521–539 (2001).

 [31] W. Chu, B. Choi and M. Song, “The role of on-line retailer brand
and infomediary reputation in increasing consumer purchase in-
tention”, International Journal of Electronic Commerce 9 (3),
115–127 (2005).

 [32] J. Marszalkowski, J. M. Marszalkowski and M. Drozdowski,
“Empirical study of load time factor in search engine ranking”,
Journal of Web Engineering 13 (1&2), 114–128 (2014).

 [33] F. Pinel, B. Dorronsoro and P. Bouvry, “Solving very large in-
stances of the scheduling of independent tasks problem on the
GPU”, Journal of Parallel and Distributed Computing 73 (1),
101–110 (2013).

 [34] P. Ezzatti, M. Pedemonte and A. Martin, “An efficient imple-
mentation of the Min-Min heuristic”, Computers & Operations
Research 40 (11), 2670–2676 (2013).

 [35] J. Marszalkowski, J. Marszalkowski and J. Musial, “Database
scheme optimization for online applications”, Foundations of
Computing and Decision Sciences 36 (2), 121–129 (2011).

 [36] J. Blazewicz, N. Cheriere, P.-F. Dutot, J. Musial and D. Trystram,
“Novel dual discounting functions for the Internet shopping op-
timization problem: new algorithms”, Journal of Scheduling 19
(3), 245–255 (2016).

 [37] M. Guzek, A. Gniewek, P. Bouvry, J. Musial and J. Blazewicz,
“Cloud brokering: current practices and upcoming challenges”,
IEEE C

 - 10.1515/bpasts-2016-0056
Downloaded from De Gruyter Online at 09/27/2016 01:29:57PM

via Gdansk University of Technology

