PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Parameters of Cleaning a CIP System Affected Energy Consumption and Cleaning Efficiency of the Plate Heat Exchanger

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a study on the effect of cleaning factors on the energy consumption of the cleaning process in a CIP system, and the correlation between single components of electricity necessary to perform this process and the cleanliness degree obtained. Studies were carried out in a laboratory cleaning station, wherein a plate heat exchanger contaminated with hot milk was included. The research program was developed according to a 5-level statistical plan. Based on the results, obtained with Experiment Planner 1.0, a regression function of energy requirement considering variables such as: cleaning time, temperature and flow rate of the cleaning liquid via the cleaned exchanger has been developed. Describing this relationship, linear and quadratic functions with double interactions were used. Significance level for the analysis was established at α = 0.05. Correlation analysis between components of the electricity necessary to perform the cleaning process (pump drive and heating of the cleaning agent) and the resulting degree of cleaning of heat exchanger plates was performed.
Rocznik
Strony
111--120
Opis fizyczny
Bibliogr. 26 poz., tab., rys.
Twórcy
  • Koszalin University of Technology, Faculty of Mechanical Engineering, Department of Food Industry Processes and Facilities, Racławicka 15–17, 75-620 Koszalin, Poland
autor
  • Koszalin University of Technology, Faculty of Mechanical Engineering, Department of Food Industry Processes and Facilities, Racławicka 15–17, 75-620 Koszalin, Poland
  • Koszalin University of Technology, Faculty of Mechanical Engineering, Department of Food Industry Processes and Facilities, Racławicka 15–17, 75-620 Koszalin, Poland
Bibliografia
  • 1. Almecija M.C., Martinez-Ferez A., Guadix A., Paez M.P., Guadix E.M., 2009. Influence of the cleaning temperature on the permeability of ceramic membranes. Desalination, 245, 708–713. DOI: 10.1016/j.desal.2009.02.041.
  • 2. Berlin J., Sonesson U., Tillman A.M., 2007. A life cycle based method to minimize environmental impact of dairy production through product sequencing. J. Cleaner Prod., 15, 347–356. DOI: 10.1016/j.jclepro.2005.07.019.
  • 3. Bunse K., Vodicka M., Schönsleben P., Brülhart M., Ernst F.O., 2011. Integrating energy efficiency performance in production management – gap analysis between industrial needs and scientific literature. J. Cleaner Prod., 19, 667–679. DOI: 10.1016/j.jclepro.2010.11.011.
  • 4. Changani S.D., Belmar-Beiny M.T., Fryer P.J. 1997. Engineering and chemical factors associated with fouling and cleaning in milk processing. Exp. Therm Fluid Sci., 14, 392–406. DOI: 10.1016/S0894-1777(96)00141-0.
  • 5. Diakun J., Mierzejewska S., Kukiełka K., 2012. The regression equation of energy requirement in the process of cleaning the pipeline by CIP method. Polish Journal of Food Engineering, 1/4(1), 5–8.
  • 6. Eide, M.H., Homleid, J.P., Mattsson, B., 2003. Life cycle assessment (LCA) of cleaningin-place processes in dairies. LWT Food Sci. Technol., 36, 303-314. DOI: 10.1016/S0023-6438(02)00211-6.
  • 7. Fryer P.J, Christian G.K., Liu W., 2006. How hygiene happens: physics and chemistry of cleaning. Int. J. Dairy Technol., 59, 76–84. DOI: 10.1111/j.1471-0307.2006.00249.x.
  • 8. Goode K.R., Asteriadou K., Fryer P.J., Picksley M., Robbins P.T., 2010. Characterizing the cleaning mechanism of yeast and the implications for Cleaning In Place (CIP). Food Bioprod. Process., 88, 365–374. DOI: 10.1016/j.fbp.2010.08.005.
  • 9. Jude B., Lemaire E. 2014. Optimising clean-in-place processes in food and beverage operations: Part 1. Process Control Systems. Available at: http://www.processonline.com.au/articles/69571.
  • 10. Kowalczyk R., Karp K., 2005. Energy consumption at sewage treatment in selected plant of dairy industry. Problemy Inżynierii Rolniczej, 4, 79–88.
  • 11. Krzemińska D., Neczaj E., Parkitna K., 2013. Zastosowanie reakcji Fentona do wspomagania biologicznego oczyszczania ścieków z przemysłu mleczarskiego. Annual Set The Environment Protection, 15, 2381–2397.
  • 12. Kukiełka, L., 2002. Basics of engineering research. PWN, Warszawa, 174–208.
  • 13. Marchini D., Rinaldi M., Montanari R., Bottani E., Solari F., 2014. Performance analysis of the water supply system of a dairy company by means of an advanced simulation tool. Int. J. Food Eng., 10, 557–571. DOI: 10.1515/ijfe-2013-0067.
  • 14. Marchini D., Rinaldi M., Montanari R., Bottani E., Solari F., 2015. Temperature analysis of the water supply system of a dairy company by means of a simulation model. Int. J. Food Eng., 11, 731–745. DOI: 10.1515/ijfe- 2015-0065.
  • 15. Neryng A., Wojdalski J., Budny J., Krasowski E., 1990. Energy and water in agro-food industry. WNT, Warsaw, 103–106, 189–194.
  • 16. Pawełas A., 2010. Energy effectiveness on the example of the brewery. Agro Industry, 3-4, 44-47.
  • 17. Piepiórka J., 2012. Comparison of evaluation methods degree of cleaning surface production in the CIP system.
  • 18. Polish Journal of Food Engineering, 2/4(2), 23–26. Available at: http://ips.wm.tu.koszalin.pl/doc/ 2012/2.2012/5_art_piepiórka-stepuk.pdf.
  • 19. Piepiórka-Stepuk J., Diakun J., Mierzejewska S., 2016. Poly-optimization of cleaning conditions for pipe systems J. and plate heat exchangers contaminated with hot milk using the Cleaning In Place method. J. Cleaner Prod., 112, 946-952. DOI: 10.1016/j.jclepro.2015.09.018.
  • 20. Rad S.J., Lewis M.J., 2014. Water utilisation, energy utilisation and waste water management in the dairy industry: A review. Int. J. Dairy Technol., 67, 1-20. DOI: 10.1111/1471-0307.12096.
  • 21. Ramirez C.A., Patel M., Blok K. 2006. From fluid milk to milk powder: Energy use and energy efficiency in the European dairy industry. Energy, 31, 1984-2004. DOI: 10.1016/j.energy.2005.10.014.
  • 22. Steinhoff-Wrześniewska A., Rajmund A., Godzwon J., 2013. Water consumption in selected branches of food industry. Inżynieria Ekologiczna, 32, 164–171.
  • 23. Williams P.J., Anderson P.A., 2006. Operational cost savings in dairy plant water usage. Int. J. Dairy Technol., 59, 147–154. DOI: 10.1111/j.1471-0307.2006.00256.x.
  • 24. Wojdalski J., Dróżdż B., 2012. Energy efficiency of food processing plants key issues and definitions. Polish Journal of Food Engineering, 3/4(3), 37–49.
  • 25. Wojdalski J., Dróżdż B., Piechocki J., Gaworski M., Zander Z., Marjanowski J., 2013. Determinants of water consumption in the dairy industry. Pol. J. Chem. Technol., 15, 61-72. DOI: 10.2478/pjct-2013-0025.
  • 26. Wojdalski J., Kaleta A., Dróżdż B., Chojnacka A., 2012. Factors influencing the energy efficiency in dairy processing plants. TEKA Commission of Motorization and Energetic in Agriculture, 12(1), 307–313.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1d9a4bdd-24b6-49d0-8ed3-164f92f1416d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.