Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Satellite gravity anomaly data are characterized with wide coverage and high overall normalized quality, and these data can be used in large-scale regional structural research. However, detailed information on local areas is often missing after smoothing. High-resolution ship-borne gravity anomaly data can better identify fault zones and block boundaries at key locations, compensating for low-resolution satellite gravity data. In this study, comprehensive gravity data derived from multiple techniques are used based on wavelet transforms, the fusion rules for high- and low-frequency wavelet coefficients are established, and the complementary use and effective fusion of gravity data derived from multiple techniques are realized. By collecting a large amount of ship-borne data in the Ross Sea of Antarctica, 1434 valid survey lines with a total length of 98,204 km are obtained in the study area. After adjustment, the root mean square of the crossover errors is ± 1.92 X 10-5 m/ s2. Here, different wavelet functions and decomposition levels are used, the concept of window weighting is introduced, and the useful information of the two data types is further fused. Thus, higher-resolution data are obtained with less errors. When fusing all line data, the minimum RMS difference between the optimal fusion result and the ship measurement data is 1.64 X 10-5 m/s2, which increases the accuracy by 1.66 X 10-5 m/s2. When we adopt 80% data fusion and the remaining 20% data validation, although a considerable portion of the remaining side lines are still distributed in areas that the original side lines cannot cover, using this method can still effectively improve the accuracy of the fused data. This method can be applied to most gravity data.
Wydawca
Czasopismo
Rocznik
Tom
Strony
187--201
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
autor
- School of Ocean and Earth Science, Tongji University, Shanghai 200092, China
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
autor
- School of Ocean and Earth Science, Tongji University, Shanghai 200092, China
autor
- School of Geosciences, China University of Petroleum, Qingdao 266555, China
autor
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
Bibliografia
- 1. Adjaout A, Sarrailh M (1997) A new gravity map, a new marine geoid around Japan and the detection of the Kuroshio current. J Geodesy 71(12):725-735
- 2. Amolins K, Zhang Y, Dare P (2007) Wavelet based image fusion techniques—an introduction, review and comparison. ISPRS J Photogramm 62(4):249-263
- 3. Bai YL, Dong DD, Wu SG, Liu Z, Zhang GX, Xu KJ (2016) A wavelet transformation approach for multi-source gravity fusion: applications and uncertainty tests. J Appl Geophys 128:18-30
- 4. Behrendt JC, Cooper A (1991) Evidence of rapid Cenozoic uplift of the shoulder escarpment of the Cenozoic west Antarctic rift system and a speculation on possible climate forcing. Geology 19(4):315-319
- 5. Bolkas D, Fotopoulos G, Braun A (2015) Comparison and fusion of satellite, airborne, and terrestrial gravity field data using wavelet decomposition. J Surv Eng 142(2):04015010
- 6. Bolkas D, Fotopoulos G, Braun A (2016) On the impact of airborne gravity data to fused gravity field models. J Geodesy 90(6):561-571
- 7. Cande SC, Stock JM, Muller RD, Ishihara T (2000) Cenozoic motion between East and West Antarctica. Nature 404:145-150
- 8. Fairhead JD, Green CM, Odegard ME (2001) Satellite-derived gravity having an impact on marine exploration. Lead Edge 20(8):873-876
- 9. Gruber T, Visser P, Ackermann C, Hosse M (2011) Validation of GOCE gravity field models by means of orbit residuals and geoid comparisons. J Geodesy 85(11):845-860
- 10. Huang MT (1990) Examination, adjustment and precision estimation of half-systematic error in marine gravity surveying. Mar Sci Bull 9(004):81-86
- 11. Huang MT (1995) Marine gravity surveying line system adjustment. J Geodesy 70:158-165
- 12. Huang MT, Guan Z, Zhai GJ, Ouyang ZHY (1999) On the compensation of systematic errors in marine gravity measurements. Mar Geodesy 22(3):183-194
- 13. Hwang C, Parsons B (1995) Gravity anomalies derived from Seasat, Geosat, ERS-1 and TOPEX/POSEIDON altimetry and ship gravity: a case study over the Reykjanes Ridge. Geophys J Int 122:551-568
- 14. Kern M, Schwarz K, Sneeuw N (2003) A study on the combination of satellite, airborne, and terrestrial gravity data. J Geodesy 77(3-4):217-225
- 15. Kuroishi Y, Keller W (2005) Wavelet approach to improvement of gravity field-geoid modeling for Japan. J Geophys Res-Sol Ea 110(B03402):1-15
- 16. Ma L, Zheng YP (2020) Regional characteristics and Moho depth for the Ross Sea. Antarctic Haiyang Xuebao 42(1):144-153
- 17. Ma L, Zheng YP, Hua QF, Guo YL, Zhao Q, Xing J (2021) Adiustment model comparison of irregular surveying network ofmarine gravity. Adv Mar Sci 39(2):279-289
- 18. Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE T Pattern Anal 11(7):674-693
- 19. Mallat SG (2008) A Wavelet Tour of Signal Processing, 3rd edn. Academic Press, The Sparse Way
- 20. Pajares G, Cruz JM (2004) A wavelet-based image fusion tutorial. Pattern Recogn 37(9):1855-1872
- 21. Panet I, Kuroishi Y, Holschneider M (2011) Wavelet modelling of the gravity field by domain decomposition methods: an example over Japan. Geophys J Int 184(1):203-219
- 22. Pirooznia M, Raoofian Naeeni M, Tourian MJ (2023) Modeling total surface current in the Persian gulf and the Oman sea by combination of geodetic and hydrographic observations and assimilation with in situ current meter data. Acta Geophys 71:2839-2863
- 23. Prince RA, Forsyth DW (1984) A simple objective method for minimizing crossover errors in marine gravity data. Geophysics 49(7):1070-1083. https://doi.org/10.1190/1.1441722
- 24. Roshandel KA, Nejati KA, Salajegheh F (2015) Interpretation of gravity data using 2-D continuous wavelet transformation and 3-D inverse modeling. J Appl Geophys 121:54-62
- 25. Sandwell DT, Garcia E, Soofi K, Wessel P, Chandler M, Smith WHF (2013) Towards 1 milligal global marine gravity accuracy from cryosat-2, jason-1, and envisa. Lead Edge 32(8):892-899
- 26. Sandwell DT, Muller RD, Smith WHF, Garcia E, Francis R (2014) New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science 346(6205):65-67
- 27. Shih HC, Hwang C, Barriot JP, Mouyen M, Correia P, Lequeux D, Sichoix L (2015) High-resolution gravity and geoid models in Tahiti obtained from new airborne and land gravity observations: data fusion by spectral combination. Earth Planets Space 67:1-16 Tscherning CC, Forsberg R, Rubek F (1998) Combining airborne and ground gravity using collocation. Springer, Berlin
- 28. Zhang CY, Dang YM, Tao J, Guo CX, Ke BG, Wang B (2017) Heterogeneous gravity data fusion and gravimetric quasigeoid computation in the coastal area of China. Mar Geod 40(2-3):142-159
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1d95b24c-55dc-421c-af0d-f4e6dc5aa948
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.