PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Virtual Acoustics

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Virtual Reality (VR) systems are used in engineering, architecture, design and in applications of biomedical research. The component of acoustics in such VR systems enables the creation of audio-visual stimuli for applications in room acoustics, building acoustics, automotive acoustics, environmental noise control, machinery noise control, and hearing research. The basis is an appropriate acoustic simulation and auralization technique together with signal processing tools. Auralization is based on time-domain modelling of the components of sound source characterization, sound propagation, and on spatial audio technology. Whether the virtual environment is considered sufficiently accurate or not, depends on many perceptual factors, and on the pre-conditioning and immersion of the user in the virtual environment. In this paper the processing steps for creation of Virtual Acoustic Environments and the achievable degree of realism are briefly reviewed. Applications are discussed in examples of room acoustics, archeological acoustics, aircraft noise, and audiology.
Słowa kluczowe
Rocznik
Strony
307--318
Opis fizyczny
Bibliogr. 46 poz., fot., rys.
Twórcy
  • Institute of Technical Acoustics RWTH Aachen University 52056 Aachen, Germany
Bibliografia
  • 1. Allen J.B., Berkley D.A. (1979), Image Method for Efficiently Simulating Small-Room Acoustics, J. Acoust. Soc. Am., 65, 943.
  • 2. Aretz M., Dietrich p., Vorländer M. (2014), Application of the mirror source method for low frequency sound prediction in rectangular rooms, Acta Acustica united with Acustica, 100, 306-319.
  • 3. ARUP acoustics (2012), How will the proposed High Speed 2 railway effect the life of communities along the route? Predicting, mitigating, auralising and presenting the results in a way that people can understand, Workshop at IoA Conference Reproduced Sound, Brighton.
  • 4. Blauert J. (1996), Spatial Hearing - The Psychophysics of Human Sound Localization, revised edition, MIT Press.
  • 5. Blauert J., Raake A. (2014), Listening and Assessing with Binaural Models, Proc. EAA Auralization and Ambisonics Symposium, Berlin.
  • 6. Botteldooren D. (1995), Finite-difference timedomain simulation of low-frequency room acoustic problems, J. Acoustic. Soc. Am., 98, 3302.
  • 7. Burkhard M.D., Sachs R.M. (1975), Anthropometric manikin for acoustic research, J. Acoust. Soc. Am., 58, 214.
  • 8. Chandak a., Antani L., Taylor M., Manocha D. (2010), Fast and Accurate Geometric Sound Propagation Using Visibility Computations, Proc. International Symposium on Room Acoustics (ISRA), Melbourne.
  • 9. Dalenback B.-I. (1996), Room Acoustic Prediction Based on a Unified Treatment of Diffuse and Specular Reflection, J. Acoust. Soc Am., 100, 899.
  • 10. Fels J., Vorländer m. (2014), Dynamische Raumakustiksimulation für die Horgeräteentwicklung und -anpassung, Proc. 17th DGA conference, German Au- diological Society, Oldenburg.
  • 11. Gardner W.G. (1995), Efficient convolution without input-output delay, J. Audio Eng. Soc., 43, 127.
  • 12. Gerretsen E. (1986), Calculation of airborne and impact sound insulation between dwellings, Applied Acoustics, 19, 245.
  • 13. Katz B. (2001), Boundary element method calculation of individual head-related transfer function. I. Rigid model calculation, J. Acoust. Soc. Am., 110, 2440.
  • 14. Kleiner M., Dalenback B.I., Svensson ü.?. (1993), Auralization - An Overview, J. Audio Eng. Soc., 41, 861.
  • 15. Krokstad A., Str0M S., S0RSDAL S. (1968), Calculating the acoustical room response by the use of a ray tracing technique, J. Sound Vib., 8, 118.
  • 16. Lindau A., Erbes V., Lepa S., H.-J., Brinkmann F., Weinzierl S. (2014), A Spatial Audio Qual Maempelity Inventory for Virtual Acoustic Environments (SAQI), Acta Acustica united with Acustica, 100, in print.
  • 17. Lindau A., Weinzierl s. (2012), Assessing the Plausibility of Virtual Acoustic Environments, Acta Acustica united with Acustica, 98, 804.
  • 18. Lokki T. (2013), Sensory evaluation of concert hall acoustics, Proc. 21st International Congress on Acoustics (ICA) Montreal.
  • 19. Lyon R. (1994), Theory and Application of Statistical Energy Analysis, Butterworth-Heinemann 2nd edition.
  • 20. Maempel H.-J., Jentsch M. (2013), Audio-visual interaction of size and distance perception in concert halls - a preliminary study, Proc. International Symposium on Room Acoustics (ISRA) Toronto.
  • 21. Naylor G.M. (1993), ODEON - Another Hybrid Room Acoustical Model, Applied Acoustics, 38, 131.
  • 22. Opdam R., de Vries D., Vorländer M. (2013), Locally or non-locally reacting boundaries: Does it make a significant acoustic difference?, Proc. International Symposium on Room Acoustics (ISRA) Toronto.
  • 23. PEAQ - Perceptual Evaluation of Audio Quality (PEAQ)(1999), ITU BS.1387.
  • 24. Pedrero A., Pollow M., Dietrich P., Behler G., Vorländer M., Díaz C., Díaz A. (2012), Mozarabic Chant anechoic recordings for auralization purposes, Proc. FIA Evora, Portugal.
  • 25. Pedrero A., Díaz-Chyla A., Pelzer S., Pollow M., Díaz C., Vorländer M. (2013), Auralización del canto mozárabe en una iglesia pre-romanica, Proc. Tecniacustica Valladolid, 1448.
  • 26. Pelzer S., Aretz M., Vorländer M. (2011), Quality assessment of room acoustic simulation tools by comparing binaural measurements and simulations in an optimized test scenario, Proc. Forum Acusticum Aalborg.
  • 27. Pelzer S., Aspöck L., Schröder D., Vorländer M. (2014), Integrating Real-Time Room Acoustics Simulation into a CAD Modeling Software to Enhance the Architectural Design Process, Buildings, 2, 113.
  • 28. Pollow M., Masiero B., Dietrich P., Fels J., Vorländer M. (2012), Fast measurement system for spatially continuous individual HRTFs, Proc. Ambisonics, York, UK.
  • 29. Savioja L. (2010), Real-Time 3D Finite-Difference Time-Domain Simulation of Mid-Frequency Room Acoustics, Proc. 13th International Conference on Digital Audio Effects, p. 43, DAFx Graz, Austria.
  • 30. Savioja L. (2014), Trends in Room Acoustics Modeling (keynote lecture), EAA Auralization and Ambisonics Symposium, Berlin.
  • 31. Savioja L., Huopaniemi J., Lokki T., Vöönönen R. (1999), Creating interactive virtual acoustic environments, J. Audio Eng. Soc., 47, 675.
  • 32. Schröder M. (1954), Die statistischen Parameter der Frequenzkurven von großen Raumen, Acustica, 4, 595.
  • 33. Schröder D. (2011), Physically Based Real-time Auralization of Interactive Virtual Environments, PhD thesis, RWTH Aachen University.
  • 34. Schröder D., Wefers F., Pelzer S., Rausch D., Vorländer M., Kuhlen T. (2010), Virtual Reality System at RWTH Aachen University, In Proceedings of the International Symposium on Room Acoustics (ISRA), Melbourne, Australia.
  • 35. Schultz T.H., Watters B.G. (1964), Propagation of Sound across Audience Seating, J. Acoust. Soc. Am., 36, 885.
  • 36. Stephenson U.M. (2010), Simulation of diffraction within ray tracing, Acta Acustica united with Acustica, 96, 516.
  • 37. Svensson U.P., Fred R.I, Vanderkooy J. (1999), An analytic secondary source model of edge diffraction impulse responses, J. Acoust. Soc. Am., 106, 2331.
  • 38. Vorländer M. (1989), Simulation of the transient and steady state sound propagation in rooms using a new combined sound particle - image source algorithm, J. Acoust. Soc. Am., 86, 172.
  • 39. Vorländer M. (2008), Auralization - Fundamentals of Acoustics, Modelling, Simulation, Algorithms and, Acoustic Virtual Reality, Springer.
  • 40. Vorländer M. (2013), Computer simulations in room acoustics: Concepts and uncertainties, J. Acoust. Soc. Am., 133, 1203.
  • 41. Vorländer M. (2013), Simulation and Evaluation of Acoustic Environments, Proc. International Symposium on Room Acoustics (ISRA) Toronto.
  • 42. Vorländer M., Schröder D., Pelzer S., Wefers F. (2014), Virtual Reality for Architectural Acoustics, Journal of Building Performance Simulation, doi:10.1080/19401493.2014.888594.
  • 43. Vorländer M., Thaden R. (2000), Auralisation of airborne sound insulation in buildings, Acustica united with Acta Acustica, 86, 70.
  • 44. Wefers F., Schräder D., Pelzer S., Vorländer M. (2009), Real-time filtering for interactive virtual acoustic prototyping, Proc. Euronoise 2009, Edinburgh, October.
  • 45. Wefers F., Vorländer M. (2011), Optimal filter partitions for real-time FIR filtering using partitioned FFT-based convolution in the frequency domain, Proc. 14th International Conference on Digital Audio Effects, DAFx Paris, France.
  • 46. Wefers F., Vorländer M. (2012), Potential of non- uniformly partitioned convolution with freely adaptable FFT sizes, Proc. AES 133rd Convention, San Francisco, CA, USA.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1d8f4969-054f-4427-8198-823af15ba1f9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.