PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A new two-scroll 4-D hyperchaotic system with a unique saddle point equilibrium, its bifurcation analysis, circuit design and a control application to complete synchronization

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, we present new results for a two-scroll 4-D hyperchaotic system with a unique saddle point equilibrium at the origin. The bifurcation and multi-stability analysis for the new hyperchaotic system are discussed in detail. As a control application, we develop a feedback control based on integral sliding mode control (ISMC) for the complete synchronization of a pair of two-scroll hyperchaotic systems developed in this work. Numerical simulations using Matlab are provided to illustrate the hyperchaotic phase portraits, bifurcation diagrams and synchronization results. Finally, as an electronic application, we simulate the new hyperchaotic system using Multisim for real-world implementations.
Rocznik
Strony
277--298
Opis fizyczny
Bibliogr. 23 poz., fot., rys., wzory
Twórcy
  • Centre for Control Systems, Vel Tech University, 400 Feet Outer Ring Road, Avadi, Chennai-600092, Tamil Nadu, India
  • Mathematical Institute, University of Oxford, Andrew Wiles Building, ROQ, Oxford Ox2 6GG, UK
autor
  • Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin, Gong Badak, 21300, Terengganu, Malaysia
  • Department of Mechanical Engineering, Universitas MuhammadiyahTasikmalaya, Tasikmalaya 46196,West Java, Indonesia
Bibliografia
  • [1] Y.J. Monkam, S.T. Kingni, R. Tchitnga and P. Woafo: Electronic simulation and microcontroller real implementation of an autonomous chaotic and hyperchaotic system made of a Colpitts-Josephson junction like circuit. Analog Integrated Circuits and Signal Processing, 110(3), (2022), 395-407. DOI: 10.1007/s10470-021-01965-1.
  • [2] J. Petrzela: Chaotic and hyperchaotic self-oscillations of lambda diode composed by generalized bipolar transistors. Applied Sciences, 11(8), (2021), Article ID 3326. DOI: 10.3390/app11083326.
  • [3] J.P. Singh, K. Rajagopal and B.K. Roy: Switching between dissipative and conservative behaviors in a modified hyperchaotic system with the variation of its parameter. International Journal of Bifurcation and Chaos, 31(16) (2021), Article ID 2130048-8. DOI: 10.1142/S0218127421300482.
  • [4] Y. Jiang, C. Li, C. Zhang, Y. Zhao and H. Zang: A double-memristor hyperchaotic oscillator with complete amplitude control. IEEE Transactions on Circuits and Systems I: Regular Papers, 68(12), (2021), 4935-4944. DOI: 10.1109/TCSI.2021.3121499.
  • [5] D. Yan, L. Wang, S. Duan and J. Chen: Designing twin memristor-based multiscroll systems by varying the flux variable of memristor. International Journal of Bifurcation and Chaos, 31(7), (2021), Article ID 2150099. DOI: 10.1142/S0218127421500991.
  • [6] R. Li and R. Ding: A simple time-delay memristor and its application in 2D HR neuron model. International Journal of Modern Physics B, 35(13), (2021), Article ID 2150166. DOI: 10.1142/S0217979221501666.
  • [7] S. Yan, E. Wang, Q. Wang, X. Sun and Y. Ren: Analysis, circuit implementation and synchronization control of a hyperchaotic system. Physica Scripta, 96(12), (2021), Article ID 125257. DOI: 10.1088/1402-4896/ac379b.
  • [8] S. Vaidyanathan, S. He and A. Sambas: A new multistable double-scroll 4-D hyperchaotic system with no equilibrium point, its bifurcation analysis, synchronization and circuit design. Archives of Control Sciences, 31(1), (2021), 99-128. DOI: 10.24425/acs.2021.136882.
  • [9] S. Vaidyanathan, I.M. Moroz and A. Sambas: A new 4-D hyperchaotic system with no equilibrium, its multistability, offset boosting and circuit simulation. Archives of Control Sciences, 30(3), (2020), 575-597. DOI: 10.24425/acs.2020.134678.
  • [10] X. Wang, M. Gao, X. Min, Z. Lin and H. Ho-Ching Iu: On the use of memristive hyperchaotic system to design color image encryption scheme. IEEE Access, 8 (2020), 182240-182248. DOI: 10.1109/ACCESS.2020.3027480.
  • [11] G.D. Leutcho, H. Wang, T.F. Fozin, K. Sun, Z.T. Njitacke and J. Kengne: Dynamics of a new multistable 4D hyperchaotic Lorenz system and its applications. International Journal of Bifurcation and Chaos, 32(1), (2022), Article ID 2250001. DOI: 10.1142/S0218127422500018.
  • [12] B. Ge, X. Chen, G. Chen and Z. Shen: Secure and fast image encryption algorithm using hyper-chaos-based key generator and vector operation. IEEE Access, 9 (2021), 137635-137654. DOI: 10.1109/ACCESS.2021.3118377.
  • [13] M. Liu, M. Yu, J. Wang, Y. Chen and Y. Bian: Design of 9-D global chaotic system and its application in secure communication. Circuit World, 48(1), (2022), 88-104. DOI: 10.1108/CW-03-2020-0042.
  • [14] S. Vaidyanathan, A. Sambas, E. Tlelo-Cuautle, A.A. Abd El-Latif, B. Abd-El-Atty, O. Giullen-Fernandez, K. Benkouider, M.A. Mohamed, M. Mamat and M.A.H. Ibrahim: A new 4-D multi-stable hyper-chaotic system with no balance point: Bifurcation analysis, circuit simulation, FPGA realization and image cryptosystem. IEEE Access, 9 (2021), 144555-144573. DOI: 10.1109/ACCESS.2021.3121428.
  • [15] K. Behih, S.E. Saadi and Z. Bouchama: Hyperchaos synchronization using T-S fuzzy model based synergetic control theory. International Journal of Intelligent Engineering and Systems, 14(6), (2021), 588-595. DOI: 10.22266/ijies2021.1231.52.
  • [16] T.L. Le: Multilayer interval type-2 fuzzy controller design for hyperchaotic synchronization. IEEE Access, 9 (2021), 155286-155296. DOI: 10.1109/access.2021.3126880.
  • [17] X. Li, C. Zheng, X. Wang, Y. Cao and G. Xu: Symmetric coexisting attractors and extreme multistability in chaotic system. Modern Physics Letters B, 35(32), (2021), Article ID 2150458. DOI: 10.1142/S0217984921504583.
  • [18] J. Shi, K. He and H. Fang: Chaos, Hopf bifurcation and control of a fractional-order delay financial system. Mathematics and Computers in Simulation, 194 (2022), 348-364. DOI: 10.1016/j.matcom.2021.12.009.
  • [19] G.D. Leutcho, H. Wang, T.F. Fozin, K. Sun Z.T. Njitacke and J. Kengne: Dynamics of a new multistable 4D hyperchaotic Lorenz system and its applications. International Journal of Bifurcation and Chaos, 32(1), (2022), Article ID 2250001. DOI: 10.1142/S0218127422500018.
  • [20] N. Mazhar, F.M. Malik, A. Raza and R. Khan: Predefined-time control of nonlinear systems: A sigmoid function based sliding manifold design approach. Alexandria Engineering Journal, 61(9), (2022), 6831-6841. DOI: 10.1016/j.aej.2021.12.030.
  • [21] A.R. Periyanagayam and Y.H. Joo: Integral sliding mode control for increasing maximum power extraction efficiency of variable-speed wind energy system. International Journal of Electrical Power and Energy Systems, 139 (2022), Article ID 107958. DOI: 10.1016/j.ijepes.2022.107958.
  • [22] J. Ansari, A. Reza Abbasi and B. Bahmani Firouzi: Decentralized LMI-based event-triggered integral sliding mode LFC of power systems with disturbance observer. Integral sliding mode control for increasing maximum power extraction efficiency of variable-speed wind energy system. International Journal of Electrical Power and Energy Systems, 138 (2022), Article ID 107971. DOI: 10.1016/j.ijepes.2022.107971.
  • [23] J. Guckenheimer and P. Holmes: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York, NY, USA, 1983
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1d8d765e-e208-411e-a602-844bbf01e7e8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.