PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Montmorillonite as the catalyst in oxidation of limonene with hydrogen peroxide and in isomerization of limonene

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In our studies montmorillonite (MMT) was used as the heterogeneous, natural catalyst. This material was previously prepared by bentonite purification with help of the sedimentation method. The obtained catalyst was characterized by: XRD, SEM, BET and EDX. Catalytic tests with montmorillonite as the catalyst were performed with the natural terpene – R-(+)-limonene. This compound was oxidized with hydrogen peroxide and, moreover, in the separate process it was also isomerized. As the main products of limonene oxidation were detected: (1,2-8,9)-diepoxide, perillyl alcohol, carvone, carveol, 1,2-epoxylimonene and 1,2-epoxylimonene diol. In the isomerization of R-(+)-limonene were formed: terpinenes, terpinolene and p-cymene. Conversions of limonene in these processes reached 70–80%. The application of montmorillonite (the natural of origin) in the studied processes (oxidation and isomerization) is environmentally friendly, it allows to reduce the cost of the studied processes. The resulting products of the processes of oxidation and isomerization of R-(+)-limonene have many applications.
Rocznik
Strony
50--58
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Institute of Organic Chemical Technology, Pułaskiego 10, 70-322 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Institute of Organic Chemical Technology, Pułaskiego 10, 70-322 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Institute of Organic Chemical Technology, Pułaskiego 10, 70-322 Szczecin, Poland
autor
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Institute of Organic Chemical Technology, Pułaskiego 10, 70-322 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Institute of Organic Chemical Technology, Pułaskiego 10, 70-322 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Institute of Organic Chemical Technology, Pułaskiego 10, 70-322 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Institute of Organic Chemical Technology, Pułaskiego 10, 70-322 Szczecin, Poland
Bibliografia
  • 1. Królikowski, W. & Rosłaniec, Z. (2004). Polymer nanocomposites. Kompozyty 4, 3–15 (in Polish)
  • 2. Wilpiszewska, K., Antosik, A. K. & Spychaj, T. (2017). Novel hydrophilic carboxymethyl starch/montmorillonite nano-composite Films. Carbohydr. Polym. 128, 82–89. DOI: 10.1016/j.carbpol.2015.04.023.
  • 3. Olejnik, M. (2008). Polymer nanocomposites involving montmorillonite – preparation, evaluation methods, properties and application. Tech. Wyr. Włók. 67–74. (in Polish).
  • 4. Kacperski, M. (2003). Polymer nanocomposites, Kompozyty 3, 225–231. (in Polish).
  • 5. Kacperski, M. (2002). Polymer nanocomposites. Polimery. 47, 801–807. (in Polish)
  • 6. Malesa, M. (2004). Nanofillers of polymer composites. Elastomery, 3, 12–17 (in Polish)
  • 7. Sikora, M. (2006). Rheological modifiers essential parameter of cosmetic products. Przem. Kosmetyczny 11, 26–31. (in Polish)
  • 8. Kunert, A. & Zaborski, M. (2010). Construction, properties and applications of layered minerals. Przem. Chem. 1, 1510–1517. (in Polish)
  • 9. Komadel, P. (2016). Acid activated clays: Materials in continuous demand. Appl. Clay Sci. 131, 84–99. DOI: 10.1016/j.clay.2016.05.001.
  • 10. Fernandes, C., Catrinescu, C., Castilho, P., Russo, P.A., Carrott, M.R. & Breen, C. (2007). Catalytic conversion of limonene over acid activated Serra de Dentro (SD) bentonite. Appl. Catal. A: General. 318, 108–120. DOI: 10.1016/j.apcata.2006.10.048.
  • 11. Koolia, F., Liu, Y., Alshahateet Solhe, F., Messali, M. & Bergaya, F. (2009). Reaction of acid activated montmorillonites with hexadecyl trimethylammonium bromide solution. Appl. Clay Sci. 43, 357–363. DOI: 10.1016/j.clay.2008.10.006.
  • 12. Nagendrappa, G. (2011). Organic synthesis using clay and clay-supported catalysts. Appl. Clay Sci. 53, 106–138. DOI: 10.1016/j.clay.2010.09.016.
  • 13. Stekrova, M., Kumara, N., Aho, A., Sinev, I., Grünert, W., Dahl, J., Roine, J., Arzumanov, S. S., Mäki-Arvela, P. & Yu. Murzin, D. (2014). Isomerization of α-pinene oxide using Fe-supported catalysts: Selective synthesis of campholenic alde-hyde. Appl. Catal. A: General. 470, 162–176. DOI: 10.1016/j.apcata.2013.10.044.
  • 14. Comelli, N., Avila, M. C., Volzone, C. & Ponzi, M. (2013). Hydration of α-pinene catalyzed by acid clays. Cent. Eur. J. Chem. 11, 689–697. DOI: 10.2478/s11532-013-0217-4.
  • 15. Ravasio, N., Zaccheria, F., Gervasini, A. & Messi, C. (2008). A new, Fe based, heterogeneous Lewis acid: Selective isomerization of a-pinene oxide. Catal. Commun. 9, 1125–1127. DOI: 10.1016/j.catcom.2007.10.019.
  • 16. Kumar, V. & Agarwal, A. K. (2014). A review on catalytic terpene transformation over heterogenous catalyst, Inter. J. Curr. Res. Chem. Pharm. Sci. 1, 78–88.
  • 17. Volcho, K. & Salakhutdinov, N. F. (2008). Transformations of Terpenoids on Acidic Clays. Mini-Rev. Org. Chem. 5, 345–354. DOI: 10.2174/157019308786242151.
  • 18. Yadav, M.Kr., Chudasama, C. D. & Jasra, R. V. (2004). Isomerisation of α-pinene using modified montmorillonite clays. J. Mol. Catal. A: Chemical, 216, 51–59. DOI: 10.1016/j.molcata.2004.02.004.
  • 19. Yarovaya, O. I., Korchagina, D. V., Salakhutdinov, N. F. & Tolstikov, G. A. (2012). Reaction of isocembreol and alcohols on clay. Chem. Nat. Comp. 48, 57–59. DOI: 0009-3130/12/4801-0056.
  • 20. Akgu, M., Ozyagcı, B. & Karabakan, A. l. (2013). Evaluation of Fe- and Cr-containing clinoptilolite catalysts for the production of camphene from a-pinene. J. Ind. Enginee. Chem. 19, 240–249. DOI: 10.1016/j.jiec.2012.07.024.
  • 21. Ilina, I.V., Suslov, E.V., Khomenko, T.M., Korchagina, D.V., Volcho, K.P., Salakhutdinov, N.F. (2009). Natural Mont-morillonite Clay as Prebiotic Catalyst. Paleont. J. 43, 958–964. DOI: 10.1134/S0031030109080139.
  • 22. Il’ina, I. V., Volcho, K. P., Korchagina, D. V., Barkhash, V. A. & Salakhutdinov, N. F. (2007). Transformations of (–)-Myrtenal Epoxide over Askanite–Bentonite Clay. Rus. J. Org. Chem. 43, 56–59. DOI: 10.1134/S1070428007010058.
  • 23. Wróblewska, A., Makuch, E. & Miądlicki, P. (2016). The studies on the limonene oxidation over the microporous TS-1 catalyst. Catal. Today, 268, 121–129. DOI: 10.1016/j.cattod.2015.11.008.
  • 24. Marino, D., Gallegos, N. G., Bengoa, J. F., Alvarez, A. M., Cagnoli, M. V., Casuscelli, S. G., Herrero, E. R. & Marchetti S. G. (2008). Ti-MCM-41 catalysts prepared by post-synthesis methods: Limonene epoxidation with H2O2. Catal. Today. 133–135, 632–638. DOI: 10.1016/j.cattod.2007.12.111.
  • 25. Wróblewska, A. (2014). The epoxidation of limonene over the TS-1 and Ti-SBA-15 catalysts. Molecules. 19, 19907–19922. DOI: 10.3390/molecules191219907.
  • 26. Pinto, L. D., Dupont, J., de Souza, R. F., Bernardo-Gusmão, K. (2008). Catalytic asymmetric epoxidation of limonene using manganese Schiff-base complexes immobilized in ionic liquids. Catal. Comm. 9, 135–139. DOI: 10.1016/j.catcom.2007.05.025.
  • 27. Bussi, J., López, A., Peña, F., Timbal, P., Paz, D., Lorenzo, D. & Dellacasa, E. (2003). Liquid phase oxidation of limonene catalyzed by palladium supported on hydrotalcites. Appl. Catal. A: General 253, 177–189. DOI: 10.1016/S0926-860X(03)00519-2.
  • 28. Ali, B., Al-Wabel, N. A., Shams, S., Ahamad, A., Khan, S. A. & Anwar, F. (2015). Essential oils used in aromatherapy: A systemic review. APJTB 5, 601–611. DOI: 10.1016/j.apjtb.2015.05.007.
  • 29. Chen, T. C., Fonseca, C. O. D. & Schönthal, A. H. (2015). Preclinical development and clinical use of perillyl alcohol for chemoprevention and cancer therapy. Am. J. Can. Res. 5, 1580–1593.
  • 30. Li, C. D., Sablong, R. J. & Koning Cor, E. (2016). Chemoselective Alternating copolymerization of limonene dioxide and carbon dioxide: a new highly functional aliphatic epoxy polycarbonate. Angew. Chem. 128, 11744–11748. DOI: 10.1002/anie.201604674.
  • 31. Morinaga, H. & Sakamoto, M. (2017). Synthesis of multi-functional epoxides derived from limonene oxide and its application to the network polymers. Tetrahedron Lett. 58, 2438–2440. DOI: 10.1016/j.tetlet.2017.05.021.
  • 32. Linnekoski, J. A., Asikainen, M., Heikkinen, H., Kaila, R. K., Räsänen, J. & Harlin A. (2014). Production of p-cymene from crude sulphate turpentine with commercial zeolite catalyst using a continuous fixed bed reactor. Org. Process Res. & Dev. 18, 1468–1475. DOI. 10.1021/op500160f.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1d8ae3ab-827e-41d8-af93-03f3259d2cdd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.