PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Use of Macroelements from Municipal Sewage Sludge by the Multiflora Rose and the Virginia fanpetals

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Municipal sewage sludge contains many valuable nutrients which can be used in the cultivation of energy crops. Application of large doses of sewage sludge can be a cause of environmental pollution, especially with nutrients. The multiflora rose and the Virginia fanpetals are plants with high nutritional requirements. The use of municipal sewage sludge in the cultivation of energy crops will allow recycling the nutrients from this organic waste. The aim of the study was to evaluate the use of macroelements from municipal sewage sludge by the multiflora rose var. "Jatar" (Rosa multiflora Thunb. ex Murray) and the Virginia fanpetals (Sida hermaphrodita Rusby). Four levels of sewage sludge fertilization were applied in the 6-year field experiment: 0, 10, 20, 40, 60 Mg DM sludge ∙ ha-1. Sewage sludge was applied once before planting energy crops. Due to the low potassium content in sewage sludge, a single supplementary fertilization with 100 kg K ∙ ha-1 in the form of 40% potassium salt (KCl) was applied on each plot. The study involved the evaluation of the yield, uptake and use by energy plants of N, P, K, Ca, Mg, and Na from sewage sludge. It was found that the increasing doses of sewage sludge significantly raised the multiflora rose and the Virginia fanpetals biomass yields. The yield of the Virginia fanpetals was one and a half times higher than that of the multiflora rose. The increasing doses of sewage sludge significantly raised the contents and uptake of N, P, K, Ca, Mg, and Na by these plants. The highest uptake of macronutrients by the multiflora rose and the Virginia fanpetals crops was determined for 60 Mg DM ∙ ha-1 fertilization dose. The results show that the Virginia fanpetals used N, P, K, Ca, Mg, and Na from the sewage sludge to a greater extent than the multiflora rose. The analyses indicate that due to the greater yields, bioaccumulation and uptake of macronutrients, Virginia fanpetals is more effective in the ‘purification’ of the substrate from excess nutrients that may pose a threat to the environment.
Rocznik
Strony
1--13
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
  • Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, Poland
  • Department of Industrial and Medicinal Plants, University of Life Sciences in Lublin, Poland
  • Institute of Soil Science, Environment Engineering and Management, University of Life Sciences in Lublin, Lublin, Poland
  • Department of Agricultural Environment Protection, University of Agriculture in Krakow, Poland
Bibliografia
  • 1. Abdul Khaliq, S.J., Al-Busaidi A., Ahmed M., Al-Wardy M., Agrama H., Choudri B.S. 2017. The effect of municipal sewage sludge on the quality of soil and crops. International Journal of Recycling of Organic Waste in Agriculture, 6, 4, 289–299. https://doi.org/10.1007/s40093–017–0176–4
  • 2. Arduini I., Cardelli R., Pampana S. 2018. Biosolids affect the growth, nitrogen accumulationand nitrogen leaching of barley. Plant, Soil and Environment, 64, 3, 95–101. https://doi.org/10.17221/745/2017-PSE
  • 3. Antonkiewicz J. 2010. Effect of sewage sludge and furnace waste on the content of selected elements in the sward of legume-grass mixture. Journal of Elementology, 15, 3, 435–443. DOI: 10.5601/ jelem.2010.15.3.435–443
  • 4. Antonkiewicz J., Kołodziej B., Bielińska E. 2017. Phytoextraction of heavy metals from municipal sewage sludge by Rosa multiflora and Sida hermaphrodita. International Journal of Phytoremediation, 19, 4, 309–318. http://dx.doi.org/10.1080/15226514.2016.1225283
  • 5. Awasthi M.K., Wang M.J., Pandey A., Chen H.Y., Awasthi S.K., Wang Q., Ren X., Lahore A.H., Li D.S., Li R.H., Hang Z.Q. 2017. Heterogeneity of zeolite combined with biochar properties as a function of sewagesludge composting and production of nutrient-rich compost. Waste Management, 68, 760–773. https://doi.org/10.1016/j.wasman.2017.06.008
  • 6. Bielińska E.J., Futa B., Baran S., Żukowska G., Olenderek H. 2015. Soils enzymes as bio-indicators of forest soils health and quality within the range of impact of Zaklady Azotowe ‘Pulawy’ SA. Sylwan, 159, 11, 921–930.
  • 7. Borkowska H., Molas R. 2012. Two extremely different crops, Salix and Sida, as sources of renewable bioenergy. Biomass and Bioenergy, 36, 234–240. http://dx.doi.org/10.1016/j.biombioe.2011.10.025
  • 8. Borkowska H., Molas R. 2013. Yield comparison of four lignocellulosic perennial energy crop species. Biomas and Bioenergy, 51, 145–153. http://dx.doi.org/10.1016/j.biombioe.2013.01.017
  • 9. Helios W., Kozak M., Malarz W., Kotecki A. 2014. Effect of sewage sludge application on the growth, yield and chemical composition of prairie cordgrass (Spartina pectinata Link.). Journal of Elementology, 19, 4, 1021–1036, DOI: 10.5601/jelem.2014.19.3.725
  • 10. Jones J.B., Case V.W. 1990. Soil testing and plant analysis. 3rd ed. Soil Science Society of America SSSA, Chapter 15.
  • 11. Kacprzak M., Neczaj E., Fijałkowski K., Grobelak A., Grossem A., Worwag M., Rorat A., Brattebo H., Almås Å., Singh B.R. 2017. Sewage sludge disposal strategies for sustainable development. Environmental Research, 156, 39–46. DOI: https://doi.org/10.1016/j.envres.2017.03.010
  • 12. Kocoń A, Jurga B. 2017. The evaluation of growth and phytoextraction potential of Miscanthus x giganteus and Sida hermaphrodita on soil contaminated simultaneously with Cd, Cu, Ni, Pb, and Zn. Environmental Science and Pollution Research, 24, 5, 4990–5000. https://doi.org/10.1007/s11356–016–8241–5
  • 13. Kołodziej B., Antonkiewicz J., Stachyra M., Bielińska E.J., Wiśniewski J., Luchowska K., Kwiatkowski C. 2015. Use of sewage sludge in bioenergy production – A case study on the effects on sorghum biomass production. European Journal of Agronomy, 69, 63–74. http://dx.doi.org/10.1016/j.eja.2015.06.004
  • 14. Kołodziej B., Stachyra M., Antonkiewicz J., Bielińska E., Wiśniewski J. 2016. The effect of harvest frequency on yielding and quality of energy raw material of reed canary grass grown on municipal sewage sludge. Biomass and Bioenergy, 85, 363–370. http://dx.doi.org/10.1016/j.biombioe.2015.12.025
  • 15. Korzeniowska J., Stanisławska-Glubiak E. 2015. Phytoremediation potential of Miscanthus x giganteus and Spartina pectinata in soil contaminated with heavy metals. Environmental Science and Pollution Research, 22, 15, 11648–11657. https://doi.org/10.1007/s11356–015–4439–1
  • 16. Kicińska A., Kosa-Burda B., Kozub P. 2018. Utilization of a sewage sludge for rehabilitating the soils degraded by the metallurgical industry and a possible environmental risk involved. Human and Ecological Risk Assessment. https://doi.org/10.1080/10807039.2018.1435256
  • 17. Krzywy-Gawrońska E. 2012. The effect of industrial wastes and municipal sewage sludge compost on the quality of Virginia fanpetals (Sida hermaphrodita Rusby) biomass Part 1. Macroelements content and their uptake dynamics. Polish Journal of Chemical Technology, 14, 2, 9–15. DOI: 10.2478/v10026–012–0064–7
  • 18. Ladd N., Butler J.H.A. 1972. Short-term assays of soil proteolytic enzyme activities using proteins and dipeptide derivatives as substrates. Soil Biol. Biochem., 4, 19–30.
  • 19. Lee C.G., Alvarez P.J.J., Kim H.G., Jeong S., Lee S., Lee K.B., Lee S.H., Choi J.W. 2018. Phosphorous recovery fromsewagesludge using calcium silicate hydrates. Chemosphere, 193, 1087–1093. https://doi.org/10.1016/j.chemosphere.2017.11.129
  • 20. Nahm M., Morhart C. 2018. Virginia mallow (Sida hermaphrodita (L.) Rusby) as perennial multipurpose crop: biomass yields, energetic valorization, utilization potentials, and management perspectives. Global Change Biology Bioenergy, 10, 6, 393–404. DOI: https://doi.org/10.1111/gcbb.12501
  • 21. Ostrowska A., Gawliński S., Szczubiałka Z. 1991. Methods of analysis and assessment of soil and plant properties. A Catalgoue. Publisher: Institute of Environmental Protection – National Research Institute, Warsaw, pp 334.
  • 22. Piotrowski K., Romanowska-Duda Z., Grzesik M. 2016. Cyanobacteria, Asahi SL and Biojodis as stimulants improving growth and development of the Sidahermaphrodita L. Rusby plant under changing climate conditions. Przemysl Chemiczny, 95, 8, 1569–1573. DOI: 10.15199/62.2016.8.31.
  • 23. Pogrzeba M., Rusinowski S., Krzyżak J. 2018. Macroelements and heavy metals content in energy crops cultivated on contaminated soil under different fertilization–case studies on autumn harvest. Environmental Science and Pollution Research, 25, 12, 12096–12106. https://doi.org/10.1007/s11356–018–1490–8
  • 24. Polish Soil Classification. 2011. Soil Science Annual, 62, 3, 1–193. http://www.ptg.sggw.pl
  • 25. Regulation. 2015. Regulation of the Minister of the Natural Environment on municipal sewage sludge dated 6 February 2015. Journal of Laws of Poland, Item 257. http://isap.sejm.gov.pl/DetailsServlet?id=WDU20150000257
  • 26. Regulation. 2016. Regulation of the Minister of the Natural Environment on how to conduct land surface pollution assessment dated 1 September 2016. Journal of Laws of Poland, Item 1395. http://isap.sejm.gov.pl/DetailsServlet?id=WDU20160001395
  • 27. Sassenrath G.F., Schneider J.M., Gaj R., Grzebisz W., Halloran J.M. 2013. Nitrogen balance as an indicator of environmental impact: Toward sustainable agricultural production. Renewable Agriculture and Food Systems, 28, 3, 276–289. https://doi.org/10.1017/S1742170512000166
  • 28. Schröder P., Beckers B., Daniels S., Gnädinger F., Maestri E., Marmiroli N., Mench M., Millan R., Obermeier M.M., Oustriere N., Persson T., Poschenrieder C., Rineau F., Rutkowska B., Schmid T., Szulc W., Witters N., Sæbø A. 2018. Intensify production, transform biomass to energy and novel goods and protect soils in Europe – A vision how to mobilize marginal lands. Science of The Total Environment, 616–617, 1101–1123. https://doi.org/10.1016/j.scitotenv.2017.10.209
  • 29. Siekiewicz S., Wierzbowska J., Kovacik P., Krzebietke S., Zarczyński P. 2018. Digestate as a substitute of fertilizers in the cultivation of Virginia fanpetals. Fresenius Environmental Bulletin, 27, 6, 3970–3976.
  • 30. Soil Survey Staff. 2014. Keys to Soil Taxonomy, 12th ed. USDA-Natural Resources Conservation Service, Washington, DC.
  • 31. Symanowicz B., Kalembasa S., NiedbałaM., Toczko M., Skwarek K. 2018. Fertilisation of pea (Pisum sativumL.) with nitrogen and potassium and its effect on soil enzymatic activity. Journal of Elementology, 23, 1, 57–67. DOI. 10.5601/jelem.2017.22.1.1395
  • 32. Tabatabai M.A., Bremner J.M. 1969. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1, 301–307.
  • 33. Thalmann A. 1968. Zur methodik der bestimmung der Dehydrogenaseaktivit~tt im Boden mittels Triphenyltetrazoliumchlorid (TTC). Landwirtsch Forsch, 21, 249–258.
  • 34. Tontti T., Poutiainen H., Heinonen-Tanski H. 2017. Efficiently treated sewagesludge supplemented with nitrogen and potassium is a good fertilizer for cereals. Land Degradation & Development, 28, 2, 742–751. https://doi.org/10.1002/ldr.2528
  • 35. Waste Catalogue. 2014. Regulation of the Minister of the Natural Environment on catalog of wastes dated 9 December 2014. Journal of Laws of Poland, Item 1923. http://isap.sejm.gov.pl/DetailsServlet?id=WDU20140001923
  • 36. Wielgosz E. 1999. Aktywność mikrobiologiczna i enzymatyczna w glebie brunatnej pod uprawą ślazowca pensylwańskiego (Sida hermaphrodita Rusby) i topinambura (Helianthus tuberosus). Ann. UMCS., sect. E, 54, 21, 173–185.
  • 37. Wierzbowska J., Sienkiewicz S., Krzebietke S., Sternik P. 2016. Sewage sludge as a source of nitrogen and phosphorus for Virginia fanpetals. Bulgarian Journal of Agricultural Science, 22, 5, 722–727.
  • 38. Wolna-Maruwka A., Sulewska H., Niewiadomska A., Panasiewicz K., Borowiak K., Ratajczak K. 2018. The influenceof sewage sludge and a consortium of aerobic microorganisms added to the soil under a Willow plantation onthe biological indicators of transformation of organic nitrogen compounds. Polish Journal of Environmental Studies, 27, 1, 403–412. https://doi.org/10.15244/pjoes/74184
  • 39. Zantua M.I., Bremner J.M. 1975. Comparison of methods of assaying urease activity in soils. Soil Biol. Biochem. 7, 291–295.
  • 40. Zapałowska A., Puchalski C., Hury G., Makarewicz A. 2017. Influence of fertilization with the use of biomass ash and sewage sludge on the chemical composition of Jerusalem artichoke used for energy-related purposes. Journal of Ecological Engineering, 18, 5, 235–245. https://doi.org/10.12911/22998993/76214
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1d8261fb-8807-4f85-84cf-3f420fc1c842
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.