Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, the authors present a computational model of a fin-based air cooling system for Permanent Magnet Synchronous Machine (PMSM) electric motors. The model can be used as a method for fast and efficient feasibility studies of air cooling for PMSM motors in hybrid-electric or all-electric aviation applications, supplementing further research (thermal resistance networks, and FEA/CFD-CHT models). In the paper, authors provide temperature distributions along the fin height which are calculated and presented for a straight fin, followed by heat transfer rate from fin surface and fin efficiency. A parameter to compare different fin materials for aviation applications is introduced – heat transfer rate from the fin to fin mass ratio. Aluminum and copper fins are compared. Different shapes of straight fin are considered and compared. The above parameters and comparison are then calculated and given for circular fins. Parameters of the whole fin-based air cooling system for specific 140 kW PMSM motor are calculated and presented.
Czasopismo
Rocznik
Tom
Strony
89--96
Opis fizyczny
Bibliogr. 21 poz., tab., wykr.
Twórcy
autor
- Institute of Aviation, Centre of Transport and Energy Conversion, Division of Energy Conversion, Al. Krakowska 110/114, 02-256 Warszawa, Poland
autor
- Institute of Aviation, Centre of Transport and Energy Conversion, Division of Energy Conversion, Al. Krakowska 110/114, 02-256 Warszawa, Poland
Bibliografia
- 1. Henke M., Narjes G., Hoffman J., Wohlers C., Urbanek S., Heister C., Steinbrink J., Canders W. R., Ponick B. (2018). Challenges and Opportunities of Very Light High-Performance Electric Drives for Aviation. Energies, vol. 11, pp. 344-368
- 2. Popescu M., Staton D., Boglietti A., Cavagnino A., Hawkins D., Goss J. (2015). Modern heat extraction systems for electrical machines - A review. IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), Torino, Italy, 26-27 March
- 3. Tighe C., Gerada C., Pickering S. (2016). Assessment of cooling methods for increased power density in electrical machines. XXIIth International Conference on Electrical Machines (ICEM'2016), Lausanne, Switzerland, 4-7 September
- 4. Tuysuz A., Meyer F., Steichen M., Zwyssig C., Kolar J. W. (2017). Advanced Cooling Methods for High-Speed Electrical Machines. IEEE Transactions on Industry Applications, vol. 53, pp. 2077-2087
- 5. Liu M., Li Y., Ding H., Sarlioglu B. (2017). Thermal Management and Cooling of Windings in Electrical Machines for Electric Vehicle and Traction Application. IEEE Transportation Electrification Conference and Expo (ITEC), Chicago, IL, United States, 22-24 June
- 6. Lim D. H., Kim S. C. (2014) Thermal performance of oil spray cooling system for in-wheel motor in electric vehicles. Applied Thermal Engineering, vol. 63, pp. 577-587
- 7. Lindner A., Hahn I. (2018). Thermal investigation and enhancement of advanced cooling techniques for a large air-gap flux-switching permanent magnet machine. IEEE International Electric Machines and Drives Conference (IEMDC), Miami, FL, United States, 21 - 24 May
- 8. Putra N., Ariantara B. (2017). Electric motor thermal management system using L-shaped flat heat pipes.Applied Thermal Engineering, vol. 126, pp. 1156-1163
- 9. Domański R. (2016), Applications of Phase change materials (PCM) in electronics cooling. In: 2-nd Polish - Brazilian Conference on Science and Technology, Warsaw, Poland, 21-22 September
- 10. Bellettre J., Sartre V., Biais F., Lallemand A. (1997). Transient state study of electric motor heating and phase change solid-liquid cooling. Applied Thermal Engineering, vol. 17, pp. 17-31
- 11. Łukasik B., Wiśniowski W. (2016). Full-electric, hybrid and turbo-electric technologies for future aircraft propulsion systems. Journal of KONES, vol. 23, pp. 305-310
- 12. Cao W., Mecrow B. C., Atkinson G. J., Bennet J. W., Atkinson D. J. (2012). Overview of electric motor technologies used for more electric aircraft (MEA). IEEE Transactions on Industrial Electronics, vol. 59, pp. 3523-3531
- 13. Madavan N., Heidmann J., Bowman C., Kascak P., Jankovsky A., Jansen R. (2016). A NASA Perspective on Electric Propulsion Technologies for Commercial Aviation, Workshop on Technology Roadmap for Large Electric Machines, Champaign, IL, United States, 5-6 April
- 14. Turan O. (2015). An exergy way to quantify sustainability metrics for a high bypass turbofan engine. Energy, vol. 86, pp. 722-736
- 15. Etele J., Rosen M. A. (2001). Sensitivity of exergyefficiencies of aerospace engines to reference environment selection. Exergy, An International Journal, vol. 1, pp. 91–99
- 16. Clark J. M., Horlock J. H. (1975). Availability andpropulsion. Journal of Mechanical Engineering Science, vol. 17, pp. 223-232
- 17. Christie R., Dubois A., Derlaga J. (2016). Cooling of Electric Motors Used for Propulsion on SCEPTOR. AIAA Aviation and Aeronautics Forum and Exposition, Washington, DC, United States, 13-17 June
- 18. Dorrell D. G. (2008). Combined Thermal and Electromagnetic Analysis of Permanent-Magnet and Induction Machines to Aid Calculation. IEEE Transactions on Industrial Electronics, vol. 55, pp. 3566-3574
- 19. Jansen R. H., Bowman C., Jankovsky A., Dyson R., Felder J. (2017). Overview of NASA Electrified Aircraft Propulsion Research for Large Subsonic Transports. AIAA Propulsion and Energy 2017 Forum, Atlanta, GA, United States, 10-12 July
- 20. Domański R. (2019). Wymiana ciepła. Wykorzystanie programu MathCad do obliczeń i analizy procesów wymiany ciepła. Biblioteka Naukowa Instytutu Lotnictwa nr 57, Wydawnictwa ILOT, Warszawa
- 21. Çengel, Y. A., Ghajar, A. J. (2015). Heat and mass transfer: Fundamentals & applications. McGraw-Hill, New York
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1d7acee3-50b9-4755-8ab5-9b270c88c156