PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of machine vision for the detection of powder bed defects in additive manufacturing processes

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The quality of the powder layers in the 3D printing process is extremely important and directly corresponds to the quality of the structures made with this technology. Therefore, it is essential to control it. It can be made in-line with a vision system combined with image processing algorithms, which can significantly improve control of the process and help with the adjustment of powder spreading systems, especially in case of difficult-to-feed powders like magnetic ones – e.g., Fe-based metallic glass powder – Fe56.04Co13.45Nb5.5B25. In this work, two algorithms – machine learning – Support Vector Machines (SVM), deep learning – Convolutional Neural Networks (CNN) – were evaluated for their ability to detect and classify the enumerated anomalies based on powder layer images. The SVM algorithm makes it possible to efficiently and quickly analyze the powder-spreading process. CNN, however, appears to be a more promising choice for the developed application, as they alleviate the need for complex image operations.
Wydawca
Rocznik
Strony
214--226
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
  • Department of Metal Forming, Welding and Metrology, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw
  • Department of Metal Forming, Welding and Metrology, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw
  • Department of Metal Forming, Welding and Metrology, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw
  • Scanway LTD, Duńska 9, 54–427 Wrocław, Poland
Bibliografia
  • [1] Brandt M, editor. Laser additive manufacturing: materials, design, technologies, and applications. Amsterdam: Elsevier, Woodhead; 2017.
  • [2] Hanzl P, Zetek M, Bakša T, Kroupa T. The influence of processing parameters on the mechanical properties of SLM parts. Procedia Eng. 2015;100:1405–13. https://doi.org/10.1016/j.proeng.2015.01.510.
  • [3] Le TP, Wang X, Davidson KP, Fronda JE, Seita M. Experimental analysis of powder layer quality as a function of feedstock and recoating strategies. Addit Manuf. 2021;39:101890. https://doi.org/10.1016/j.addma.2021.101890.
  • [4] Wang D, Yu C, Ma J, Liu W, Shen Z. Densification and crack suppression in selective laser melting of pure molybdenum. Mater Des. 2017;129:44–52. https://doi.org/10.1016/j.matdes.2017.04.094.
  • [5] Scime L, Beuth J. Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained computer vision algorithm. Addit Manuf. 2018;19:114–26. https://doi.org/10.1016/j.addma.2017.11.009.
  • [6] Maamoun AH, Xue YF, Elbestawi MA, Veldhuis SC. Effect of selective laser melting process parameters on the quality of Al alloy parts: powder characterization, density, surface roughness, and dimensional accuracy. Materials (Basel). 2018;11. https://doi.org/10.3390/ma11122343.
  • [7] Chen HY, Lin CC, Horng M-H, Chang LK, Hsu JH, Chang TW, et al. Deep learning applied to defect detection in powder spreading process of magnetic material additive manufacturing. Materials (Basel). 2022;15. https://doi.org/10o3390/ma15165662.
  • [8] Li X, Shan G, Shek CH. Machine learning prediction of magnetic properties of Fe-based metallic glasses considering glass forming ability. J Mater Sci Technol. 2022;103:113–20. https://doi.org/10.1016/j.jmst.2021.05.076.
  • [9] Zhang P, Tan J, Tian Y, Yan H, Yu Z. Research progress on selective laser melting (SLM) of bulk metallic glasses (BMGs): a review. Int J Adv Manuf Technol. 2022;118:2017–57. https://doi.org/10.1007/s00170-021-07990-8.
  • [10] McCann R, Obeidi MA, Hughes C, McCarthy É, Egan DS, Vijayaraghavan RK, et al. In-situ sensing, process monitoring and machine control in laser powder bed fusion: a review. Addit Manuf. 2021;45:102058. https://doi.org/10.1016/j.addma.2021.102058.
  • [11] Craeghs T, Clijsters S, Yasa E, Kruth J. Online quality control of selective laser melting. Proc 20th Solid Freeform Fabric (SFF) Symp. Austin, TX, USA. 8–10 August 2011.
  • [12] Yin Y, Liming, DG. Research on feature extraction of local binary pattern of SLM powder bed gray image. J Phys: Conf Series. 2021;1885:32007. https://doi.org/10.1088/1742-6596/1885/3/032007.
  • [13] Scime L, Siddel D, Baird S, Paquit V. Layer-wise anomaly detection and classification for powder bed additive manufacturing processes: a machine-agnostic algorithm for real-time pixel-wise semantic segmentation. Addit Manuf. 2020;36:101453. https://doi.org/10.1016/j.addma.2020.101453.
  • [14] Lin Z, Lai Y, Pan T, Zhang W, Zheng J, Ge X, Liu Y. A new method for automatic detection of defects in Sselective laser melting based on machine vision. Materials (Basel). 2021;14. https://doi.org/10.3390/ma14154175.
  • [15] Phuc LT, Seita M. A high-resolution and large field-of-view scanner for in-line characterization of powder bed defects during additive manufacturing. Mater Des. 2019;164:107562. https://doi.org/10.1016/j.matdes.2018.107562.
  • [16] Fischer FG, Zimmermann MG, Praetzsch N, Knaak C. Monitoring of the powder bed quality in metal additive manufacturing using deep transfer learning. Mater Des. 2022;222:111029. https://doi.org/10.1016/j.matdes.2022.111029.
  • [17] Bovik AC. Handbook of image and video processing. San Diego: Academic Press; 2000.
  • [18] Gholami R, Fakhari N. Support vector machine: principles, parameters, and applications. In: Samui P, Sekhar S, Balas VEBT-H, editors. Handbook of neural computation. Amsterdam: Elsevier, Academic Press,; 2017. p. 515–35. doi: 10.1016/B978-0-12-811318-9.00027-2
  • [19] Liu J, Ye J, Silva Izquierdo D, Vinel A, Shamsaei N, Shao S. A review of machine learning techniques for process and performance optimization in laser beam powder bed fusion additive manufacturing. J Intell Manuf. 2022. https://doi.org/10.1007/s10845-022-02012-0.
  • [20] Xiao L, Lu M, Huang H. Detection of powder bed defects in selective laser sintering using convolutional neural network. Int J Adv Manuf Technol. 2020;107:2485–96. https://doi.org/10.1007/s00170-020-05205-0.
  • [21] Li J, Zhou Q, Cao L, Wang Y, Hu J. A convolutional neural network-based multi-sensor fusion approach for in-situ quality monitoring of selective laser melting. J Manuf Syst. 2022;64:429–42. https://doi.org/10.1016/j.jmsy.2022.07.007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1d6695e9-918d-4e2f-a3e9-8af5543bfed8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.